Listing 1 - 10 of 10 |
Sort by
|
Choose an application
Solutions, Solid. --- Solid solutions --- Crystallization --- Solidification
Choose an application
THERMAL PROPERTY --- THERMODYNAMICS --- OXIDES --- SOLID SOLUTIONS --- THERMAL PROPERTY --- THERMODYNAMICS --- OXIDES --- SOLID SOLUTIONS
Choose an application
DIFFUSION --- LIQUIDS --- OPTICAL MEASUREMENT --- SOLID SOLUTIONS --- OSMOSIS --- MOLECULAR THEORY --- MOTION STUDIES --- DISSOLVED ORGANIC MATTER --- CHEMISTRY, PHYSICAL AND THEORETICAL --- DIFFUSION --- LIQUIDS --- OPTICAL MEASUREMENT --- SOLID SOLUTIONS --- OSMOSIS --- MOLECULAR THEORY --- MOTION STUDIES --- DISSOLVED ORGANIC MATTER --- CHEMISTRY, PHYSICAL AND THEORETICAL
Choose an application
This volume provides a state-of-the-art report on the modelling of aqueous-solid solution systems by the combined use of chemical thermodynamics and experimental and computational techniques. These systems are ubiquitous in nature and therefore intrinsic to the understanding and quantification of radionuclide containment and retardation processes present in geological repositories of radioactive waste. Representative cases for study have been chosen from the radioactive waste literature to illustrate the application of the various approaches. This report has been prepared by a team of four leading experts in the field under the auspices of the OECD/NEA Thermochemical Database (TDB) Project.
Radioactive waste disposal. --- Solutions, Solid. --- Thermodynamics. --- Chemistry, Physical and theoretical --- Dynamics --- Mechanics --- Physics --- Heat --- Heat-engines --- Quantum theory --- Solid solutions --- Crystallization --- Solidification --- Nuclear waste disposal --- Nuclear engineering --- Radioactivity --- Refuse and refuse disposal --- Radioactive pollution --- Safety measures
Choose an application
This book systematizes data on the heterophase states and their evolution in perovskite-type ferroelectric solid solutions. It also provides a general interpretation of heterophase and domain structures on changing temperature, composition or electric field, as well as the complete analysis of interconnections domain structures, unit-cell parameters changes, heterophase structures and stress relief. The description of numerous examples of heterophase states in lead-free ferroelectric solid solutions is also included. Domain state–interface diagrams put forward the interpretation of heterophase states in perovskite-type ferroelectric (FE) solid solutions and describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases, the effect of external electric field etc. This 2nd edition generalizes the results on the heterophase ferroelectric solid solutions and the stress relief and presents new results on heterophase/domain structures and phase contents in lead-free ferroelectric solid solutions. .
Solutions, Solid. --- Materials. --- Magnetism. --- Chemistry. --- Structural Materials. --- Magnetism, Magnetic Materials. --- Electrochemistry. --- Applied and Technical Physics. --- Metallic Materials. --- Solid solutions --- Crystallization --- Solidification --- Physical sciences --- Mathematical physics --- Physics --- Electricity --- Magnetics --- Engineering --- Engineering materials --- Industrial materials --- Engineering design --- Manufacturing processes --- Materials --- Structural materials. --- Magnetic materials. --- Physics. --- Metals. --- Metallic elements --- Chemical elements --- Ores --- Metallurgy --- Natural philosophy --- Philosophy, Natural --- Dynamics --- Chemistry, Physical and theoretical --- Architectural materials --- Architecture --- Building --- Building supplies --- Buildings --- Construction materials --- Structural materials
Choose an application
Liquids --- -Fluid mechanics --- -Matter --- -Atoms --- Dynamics --- Gravitation --- Physics --- Substance (Philosophy) --- Hydromechanics --- Continuum mechanics --- Fluids --- Permeability --- Polywater --- Effect of reduced gravity on --- -Congresses --- Congresses --- -Hydromechanics --- Fluid mechanics --- Matter --- Atoms --- Effect of reduced gravity on&delete& --- Urbanization --- Regional planning --- Economic development --- Economic aspects --- Nepal --- Economic policy. --- Fluid dynamics. --- Transport theory. --- Liquids - Effect of reduced gravity on - Congresses --- Fluid mechanics - Congresses --- Matter - Effect of reduced gravity on - Congresses --- Coagulation --- Convection --- Critical point --- Crystal growth --- Diffusion theory --- Gravitational environments --- Liquid metals --- Marangoni flows --- Melting --- Melts --- Nucleation --- Phase transformations --- Solid solutions --- Solidification points --- Thermophysical properties --- Transition flow --- Transition metals --- Transition points
Choose an application
The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.
Ferroelectric crystals. --- Solutions, Solid. --- Ferroelectric crystals --- Solutions, Solid --- Chemical & Materials Engineering --- Physics --- Electrical & Computer Engineering --- Engineering & Applied Sciences --- Physical Sciences & Mathematics --- Electricity & Magnetism --- Electrical Engineering --- Materials Science --- Solid solutions --- Ferroelectrics --- Materials. --- Magnetism. --- Chemistry. --- Chemistry, Physical organic. --- Structural Materials. --- Magnetism, Magnetic Materials. --- Electrochemistry. --- Applied and Technical Physics. --- Metallic Materials. --- Physical Chemistry. --- Crystallization --- Solidification --- Chemistry, Physical organic --- Chemistry, Organic --- Chemistry, Physical and theoretical --- Physical sciences --- Mathematical physics --- Electricity --- Magnetics --- Engineering --- Engineering materials --- Industrial materials --- Engineering design --- Manufacturing processes --- Materials --- Structural materials. --- Magnetic materials. --- Physics. --- Metals. --- Physical chemistry. --- Chemistry, Theoretical --- Physical chemistry --- Theoretical chemistry --- Chemistry --- Metallic elements --- Chemical elements --- Ores --- Metallurgy --- Natural philosophy --- Philosophy, Natural --- Dynamics --- Architectural materials --- Architecture --- Building --- Building supplies --- Buildings --- Construction materials --- Structural materials
Choose an application
Crystallography remains, for mineralogy, one of the main sources of information on natural crystalline substances. A description of mineral species shape is carried out according to the principles of geometric crystallography; the crystal structure of minerals is determined using X-ray crystallography techniques, and physical crystallography approaches allow one to evaluate various properties of minerals, etc. However, the reverse comparison should not be forgotten as well: the crystallography science, in its current form, was born in the course of mineralogical research, long before preparative chemistry received such extensive development. It is worth noting that, even today, investigations of crystallographic characteristics of minerals regularly open up new horizons in materials science, because the possibilities of nature (fascinating chemical diversity; great variation of thermodynamic parameters; and, of course, almost endless processing time) are still not available for reproduction in any of the world's laboratories. This Special Issue is devoted to mineralogical crystallography, the oldest branch of crystallographic science, and aims to combine important surveys covering topics indicated in the keywords below.
Research & information: general --- galenobismutite --- high pressure --- single-crystal X-ray synchrotron diffraction --- equation of state --- calcium ferrite structure type --- lone electron pair --- vaterite --- calcium carbonate --- polymorph --- precipitation --- synthesis --- carbonation --- pathogen crystallization --- biomimetic synthesis --- renal stone --- calcium oxalate --- apatite --- brushite --- struvite --- octocalcium phosphate --- whitlockite --- Escherichia coli --- Klebsiella pneumoniae --- Pseudomonas aeruginosa --- Staphylococcus aureus --- uranyl --- selenite --- selenate --- crystal structure --- topology --- structural complexity --- demesmaekerite --- guillemenite --- haynesite --- coesite --- high-temperature Raman --- FTIR spectrum --- single crystal structure --- isobaric Grüneisen parameters --- OH-stretching modes --- strontium oxalate --- solid solutions --- ionic substitutions --- weddellite --- whewellite --- X-ray powder diffraction --- scanning electron microscopy --- EDX spectroscopy --- hydroxy-hydrate --- sulfate --- cesium --- schoepite --- krasnoshteinite --- zeolite-like borate --- hydrous aluminum chloroborate --- new mineral --- microporous crystalline material --- evaporitic salt rock --- Verkhnekamskoe potassium salt deposit --- Perm Krai --- anatomy --- Cactaceae --- oxalate --- silica --- stem --- stanfieldite --- phosphate --- merrillite --- meteorite --- pallasite --- mesosiderite --- luminophore --- bioceramics --- powder diffraction --- Raman spectroscopy --- Kamchatka --- hot springs --- pyrite --- complexity of crystal habits --- Mars --- mineral --- crystallography --- crystal chemistry --- X-ray diffraction --- crystal growth --- mineral evolution
Choose an application
Crystallography remains, for mineralogy, one of the main sources of information on natural crystalline substances. A description of mineral species shape is carried out according to the principles of geometric crystallography; the crystal structure of minerals is determined using X-ray crystallography techniques, and physical crystallography approaches allow one to evaluate various properties of minerals, etc. However, the reverse comparison should not be forgotten as well: the crystallography science, in its current form, was born in the course of mineralogical research, long before preparative chemistry received such extensive development. It is worth noting that, even today, investigations of crystallographic characteristics of minerals regularly open up new horizons in materials science, because the possibilities of nature (fascinating chemical diversity; great variation of thermodynamic parameters; and, of course, almost endless processing time) are still not available for reproduction in any of the world's laboratories. This Special Issue is devoted to mineralogical crystallography, the oldest branch of crystallographic science, and aims to combine important surveys covering topics indicated in the keywords below.
galenobismutite --- high pressure --- single-crystal X-ray synchrotron diffraction --- equation of state --- calcium ferrite structure type --- lone electron pair --- vaterite --- calcium carbonate --- polymorph --- precipitation --- synthesis --- carbonation --- pathogen crystallization --- biomimetic synthesis --- renal stone --- calcium oxalate --- apatite --- brushite --- struvite --- octocalcium phosphate --- whitlockite --- Escherichia coli --- Klebsiella pneumoniae --- Pseudomonas aeruginosa --- Staphylococcus aureus --- uranyl --- selenite --- selenate --- crystal structure --- topology --- structural complexity --- demesmaekerite --- guillemenite --- haynesite --- coesite --- high-temperature Raman --- FTIR spectrum --- single crystal structure --- isobaric Grüneisen parameters --- OH-stretching modes --- strontium oxalate --- solid solutions --- ionic substitutions --- weddellite --- whewellite --- X-ray powder diffraction --- scanning electron microscopy --- EDX spectroscopy --- hydroxy-hydrate --- sulfate --- cesium --- schoepite --- krasnoshteinite --- zeolite-like borate --- hydrous aluminum chloroborate --- new mineral --- microporous crystalline material --- evaporitic salt rock --- Verkhnekamskoe potassium salt deposit --- Perm Krai --- anatomy --- Cactaceae --- oxalate --- silica --- stem --- stanfieldite --- phosphate --- merrillite --- meteorite --- pallasite --- mesosiderite --- luminophore --- bioceramics --- powder diffraction --- Raman spectroscopy --- Kamchatka --- hot springs --- pyrite --- complexity of crystal habits --- Mars --- mineral --- crystallography --- crystal chemistry --- X-ray diffraction --- crystal growth --- mineral evolution
Choose an application
Crystallography remains, for mineralogy, one of the main sources of information on natural crystalline substances. A description of mineral species shape is carried out according to the principles of geometric crystallography; the crystal structure of minerals is determined using X-ray crystallography techniques, and physical crystallography approaches allow one to evaluate various properties of minerals, etc. However, the reverse comparison should not be forgotten as well: the crystallography science, in its current form, was born in the course of mineralogical research, long before preparative chemistry received such extensive development. It is worth noting that, even today, investigations of crystallographic characteristics of minerals regularly open up new horizons in materials science, because the possibilities of nature (fascinating chemical diversity; great variation of thermodynamic parameters; and, of course, almost endless processing time) are still not available for reproduction in any of the world's laboratories. This Special Issue is devoted to mineralogical crystallography, the oldest branch of crystallographic science, and aims to combine important surveys covering topics indicated in the keywords below.
Research & information: general --- galenobismutite --- high pressure --- single-crystal X-ray synchrotron diffraction --- equation of state --- calcium ferrite structure type --- lone electron pair --- vaterite --- calcium carbonate --- polymorph --- precipitation --- synthesis --- carbonation --- pathogen crystallization --- biomimetic synthesis --- renal stone --- calcium oxalate --- apatite --- brushite --- struvite --- octocalcium phosphate --- whitlockite --- Escherichia coli --- Klebsiella pneumoniae --- Pseudomonas aeruginosa --- Staphylococcus aureus --- uranyl --- selenite --- selenate --- crystal structure --- topology --- structural complexity --- demesmaekerite --- guillemenite --- haynesite --- coesite --- high-temperature Raman --- FTIR spectrum --- single crystal structure --- isobaric Grüneisen parameters --- OH-stretching modes --- strontium oxalate --- solid solutions --- ionic substitutions --- weddellite --- whewellite --- X-ray powder diffraction --- scanning electron microscopy --- EDX spectroscopy --- hydroxy-hydrate --- sulfate --- cesium --- schoepite --- krasnoshteinite --- zeolite-like borate --- hydrous aluminum chloroborate --- new mineral --- microporous crystalline material --- evaporitic salt rock --- Verkhnekamskoe potassium salt deposit --- Perm Krai --- anatomy --- Cactaceae --- oxalate --- silica --- stem --- stanfieldite --- phosphate --- merrillite --- meteorite --- pallasite --- mesosiderite --- luminophore --- bioceramics --- powder diffraction --- Raman spectroscopy --- Kamchatka --- hot springs --- pyrite --- complexity of crystal habits --- Mars --- mineral --- crystallography --- crystal chemistry --- X-ray diffraction --- crystal growth --- mineral evolution --- galenobismutite --- high pressure --- single-crystal X-ray synchrotron diffraction --- equation of state --- calcium ferrite structure type --- lone electron pair --- vaterite --- calcium carbonate --- polymorph --- precipitation --- synthesis --- carbonation --- pathogen crystallization --- biomimetic synthesis --- renal stone --- calcium oxalate --- apatite --- brushite --- struvite --- octocalcium phosphate --- whitlockite --- Escherichia coli --- Klebsiella pneumoniae --- Pseudomonas aeruginosa --- Staphylococcus aureus --- uranyl --- selenite --- selenate --- crystal structure --- topology --- structural complexity --- demesmaekerite --- guillemenite --- haynesite --- coesite --- high-temperature Raman --- FTIR spectrum --- single crystal structure --- isobaric Grüneisen parameters --- OH-stretching modes --- strontium oxalate --- solid solutions --- ionic substitutions --- weddellite --- whewellite --- X-ray powder diffraction --- scanning electron microscopy --- EDX spectroscopy --- hydroxy-hydrate --- sulfate --- cesium --- schoepite --- krasnoshteinite --- zeolite-like borate --- hydrous aluminum chloroborate --- new mineral --- microporous crystalline material --- evaporitic salt rock --- Verkhnekamskoe potassium salt deposit --- Perm Krai --- anatomy --- Cactaceae --- oxalate --- silica --- stem --- stanfieldite --- phosphate --- merrillite --- meteorite --- pallasite --- mesosiderite --- luminophore --- bioceramics --- powder diffraction --- Raman spectroscopy --- Kamchatka --- hot springs --- pyrite --- complexity of crystal habits --- Mars --- mineral --- crystallography --- crystal chemistry --- X-ray diffraction --- crystal growth --- mineral evolution
Listing 1 - 10 of 10 |
Sort by
|