Narrow your search

Library

FARO (2)

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

Vlaams Parlement (2)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2021 (2)

2019 (3)

Listing 1 - 5 of 5
Sort by

Book
Cytochromes P450: Drug Metabolism, Bioactivation and Biodiversity 2.0
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, "Cytochromes P450: Drug Metabolism, Bioactivation and Biodiversity", presents five papers on human cytochrome P450 (CYP) and P450 reductase, three reviews on the role of CYPs in humans and their use as biomarkers, six papers on CYPs in microorganisms, and one study on CYP in insects. The first paper reports the in silico modeling of human CYP3A4 access channels. The second uses structural methods to explain the mechanism-based inactivation of CYP3A4 by mibefradil, 6,7-dihydroxy-bergamottin, and azamulin. The third article compares electron transfer in CYP2C9 and CYP2C19 using structural and biochemical methods, and the fourth uses kinetic methods to study electron transfer to CYP2C8 allelic mutants. The fifth article characterizes electron transfer between the reductase and CYP using in silico and in vitro methods, focusing on the conformations of the reductase. Then, two reviews describe clinical implications in cardiology and oncology and the role of fatty acid metabolism in cardiology and skin diseases. The second review is on the potential use of circulating extracellular vesicles as biomarkers. Five papers analyze the CYPomes of diverse microorganisms: the Bacillus genus, Mycobacteria, the fungi Tremellomycetes, Cyanobacteria, and Streptomyces. The sixth focuses on a specific Mycobacterium CYP, CYP128, and its importance in M. tuberculosis. The subject of the last paper is CYP in Sogatella furcifera, a plant pest, and its resistance to the insecticide sulfoxaflor.

Keywords

Research & information: general --- Antibiotics --- Bacillus --- biosynthetic gene clusters --- comparative analysis --- cytochrome P450 monooxygenase --- Mycobacterium --- P450 diversity percentage --- P450 profiling --- secondary metabolites --- NADPH-cytochrome P450 reductase (CPR) --- microsomal cytochrome P450 (CYP) --- Cytochrome b5 (CYB5) --- protein dynamics --- electron-transfer (ET) --- protein–protein interaction --- cytochromes P450 --- CYP3A4 --- active site access channels --- cavities boundaries --- minimal cost paths --- CYP139A1 --- genome data mining --- host metabolism --- Mycobacterium tuberculosis --- polyketides --- tuberculosis --- cryptococcus --- cryptococcus neoformans --- CYP51 --- fungal pathogens --- genome data-mining --- human pathogens --- CYP diversity analysis --- tremellomycetes --- trichosporon --- mechanism-based inhibitor --- crystal structure --- CYP4 genes --- genetic polymorphisms --- 20-HETE --- fatty acid --- arachidonic acid --- SNPs --- molecular functionality --- metabolism --- lamellar ichthyosis --- Bietti’s crystalline dystrophy --- cytochrome P450 --- isoform --- membrane protein --- protein-membrane interactions --- enzyme substrate specificity --- mutagenesis --- molecular dynamics simulation --- Sogatella furcifera --- sulfoxaflor --- transcriptome --- RNA interference --- CYP2C8 --- polymorphisms --- reactive oxygen species --- paclitaxel --- cytochrome P450 reductase --- electron transfer --- extracellular vesicles --- exosomes --- extrahepatic tissues --- plasma --- circulatory CYPs --- CYP450 --- drug metabolism --- precision Cardio-Oncology --- precision medicine --- systems medicine --- cytochromes P450 monooxygenases --- Cyanobacteria --- gene-cluster diversity percentage --- mathematical formula --- phylogenetic analysis --- Streptomyces --- cytochrome P450 monooxygenases --- terpenes --- P450 blooming --- non-ribosomal peptides --- cytochrome P450 monooxygenenases --- CYP128A1 --- Mycobacterium tuberculosis H37Rv --- molecular dynamic simulations --- azole drugs --- menaquinone --- Antibiotics --- Bacillus --- biosynthetic gene clusters --- comparative analysis --- cytochrome P450 monooxygenase --- Mycobacterium --- P450 diversity percentage --- P450 profiling --- secondary metabolites --- NADPH-cytochrome P450 reductase (CPR) --- microsomal cytochrome P450 (CYP) --- Cytochrome b5 (CYB5) --- protein dynamics --- electron-transfer (ET) --- protein–protein interaction --- cytochromes P450 --- CYP3A4 --- active site access channels --- cavities boundaries --- minimal cost paths --- CYP139A1 --- genome data mining --- host metabolism --- Mycobacterium tuberculosis --- polyketides --- tuberculosis --- cryptococcus --- cryptococcus neoformans --- CYP51 --- fungal pathogens --- genome data-mining --- human pathogens --- CYP diversity analysis --- tremellomycetes --- trichosporon --- mechanism-based inhibitor --- crystal structure --- CYP4 genes --- genetic polymorphisms --- 20-HETE --- fatty acid --- arachidonic acid --- SNPs --- molecular functionality --- metabolism --- lamellar ichthyosis --- Bietti’s crystalline dystrophy --- cytochrome P450 --- isoform --- membrane protein --- protein-membrane interactions --- enzyme substrate specificity --- mutagenesis --- molecular dynamics simulation --- Sogatella furcifera --- sulfoxaflor --- transcriptome --- RNA interference --- CYP2C8 --- polymorphisms --- reactive oxygen species --- paclitaxel --- cytochrome P450 reductase --- electron transfer --- extracellular vesicles --- exosomes --- extrahepatic tissues --- plasma --- circulatory CYPs --- CYP450 --- drug metabolism --- precision Cardio-Oncology --- precision medicine --- systems medicine --- cytochromes P450 monooxygenases --- Cyanobacteria --- gene-cluster diversity percentage --- mathematical formula --- phylogenetic analysis --- Streptomyces --- cytochrome P450 monooxygenases --- terpenes --- P450 blooming --- non-ribosomal peptides --- cytochrome P450 monooxygenenases --- CYP128A1 --- Mycobacterium tuberculosis H37Rv --- molecular dynamic simulations --- azole drugs --- menaquinone


Book
Plant Innate Immunity 2.0
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plants possess a rather complex and efficient immune system. During their evolutionary history, plants have developed various defense strategies in order to recognize and distinguishing between self and non-self, and face pathogens and animal pests. Accordingly, to study the plant innate immunity represents a new frontier in the plant pathology and crop protection fields. This book is structured in 6 sections. The first part introduces some basic and general aspects of the plant innate immunity and crop protection. Sections 2–5 focus on fungal and oomycete diseases (section 2), bacterial and phytoplasma diseases (section 3), virus diseases (section 4), and insect pests (section 5), with a number of case studies and plant–pathogen/pest interactions. The last section deals with plant disease detection and control. The book aims to highlight new trends in these relevant areas of plant sciences, providing a global perspective that is useful for future and innovative ideas.

Keywords

Bakraee --- tomato gray mold --- Citrus sinensis --- CDPKs --- salicylic acid --- calmodulin --- glycerol-3-phosphate --- biotic stress responses --- negative regulator --- rice blast --- metabolomics --- hydroperoxide lyase --- Bromoviridae --- induced defense responses --- leaf transcriptome --- calcium signature --- “Candidatus Liberibacter” --- garden impatiens --- Chilo suppressalis --- plant defence --- plant–virus interactions --- spectral distribution of light --- Magnaporthe oryzae --- plant-virus interaction --- biological control --- ultrastructure --- pathogenicity --- disease resistance --- Potato virus Y --- symbiosis --- N-hydroxypipecolic acid --- VaHAESA --- priming --- plant–microbe interactions --- systemic and local movement --- immunity --- CaWRKY40b --- plant protection products --- hypersensitive response --- cellulose synthase --- herbivore-induced defense response --- Macrosiphum euphorbiae --- RTNLB --- ISR --- RNA silencing --- herbivore-induced plant defenses --- disease management --- sustainable crop protection --- WRKY networks --- Camellia sinensis --- RNA-Seq --- transcriptional modulation --- ETI --- pathogenesis related-protein 2 --- cell wall --- basal defense --- candidate disease resistance gene --- MTI --- grapevine --- defense-related signaling pathways --- wounding --- ethylene --- CMLs --- Prune dwarf virus --- Arabidopsis thaliana --- SAR signalling --- innate immunity --- agrochemicals --- OsGID1 --- Nilaparvata lugens --- tobacco --- tomato leaf mold --- Solanum lycopersicum --- downy mildew --- pipecolic acid --- chemical elicitors --- bismerthiazol --- pre-conditioning --- gibberellin --- “Candidatus Phytoplasma” --- dieback --- CaWRKY22 --- microbiota --- Sogatella furcifera --- PTI --- SAR --- Bacillus subtilis --- PRRs --- aphid resistance --- methyl salicylate --- regurgitant --- Myzus persicae --- Agrobacterium --- Ectropis obliqua --- Capsicum annuum --- polyphenol oxidase --- plant proteases --- plant immunity --- jasmonic acid --- calcium --- light dependent signalling --- Ralstonia solanacearum --- proteomics --- plant defense response --- Arabidopsis --- Lasiodiplodia theobromae --- azelaic acid --- citrus decline disease --- New Guinea impatiens --- replication process --- rice --- mango --- ?-3 fatty acid desaturase --- Ralstonia Solanacearum --- food security --- iTRAQ --- mitogen-activated protein kinase 4


Book
Plant Innate Immunity 2.0
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plants possess a rather complex and efficient immune system. During their evolutionary history, plants have developed various defense strategies in order to recognize and distinguishing between self and non-self, and face pathogens and animal pests. Accordingly, to study the plant innate immunity represents a new frontier in the plant pathology and crop protection fields. This book is structured in 6 sections. The first part introduces some basic and general aspects of the plant innate immunity and crop protection. Sections 2–5 focus on fungal and oomycete diseases (section 2), bacterial and phytoplasma diseases (section 3), virus diseases (section 4), and insect pests (section 5), with a number of case studies and plant–pathogen/pest interactions. The last section deals with plant disease detection and control. The book aims to highlight new trends in these relevant areas of plant sciences, providing a global perspective that is useful for future and innovative ideas.

Keywords

Bakraee --- tomato gray mold --- Citrus sinensis --- CDPKs --- salicylic acid --- calmodulin --- glycerol-3-phosphate --- biotic stress responses --- negative regulator --- rice blast --- metabolomics --- hydroperoxide lyase --- Bromoviridae --- induced defense responses --- leaf transcriptome --- calcium signature --- “Candidatus Liberibacter” --- garden impatiens --- Chilo suppressalis --- plant defence --- plant–virus interactions --- spectral distribution of light --- Magnaporthe oryzae --- plant-virus interaction --- biological control --- ultrastructure --- pathogenicity --- disease resistance --- Potato virus Y --- symbiosis --- N-hydroxypipecolic acid --- VaHAESA --- priming --- plant–microbe interactions --- systemic and local movement --- immunity --- CaWRKY40b --- plant protection products --- hypersensitive response --- cellulose synthase --- herbivore-induced defense response --- Macrosiphum euphorbiae --- RTNLB --- ISR --- RNA silencing --- herbivore-induced plant defenses --- disease management --- sustainable crop protection --- WRKY networks --- Camellia sinensis --- RNA-Seq --- transcriptional modulation --- ETI --- pathogenesis related-protein 2 --- cell wall --- basal defense --- candidate disease resistance gene --- MTI --- grapevine --- defense-related signaling pathways --- wounding --- ethylene --- CMLs --- Prune dwarf virus --- Arabidopsis thaliana --- SAR signalling --- innate immunity --- agrochemicals --- OsGID1 --- Nilaparvata lugens --- tobacco --- tomato leaf mold --- Solanum lycopersicum --- downy mildew --- pipecolic acid --- chemical elicitors --- bismerthiazol --- pre-conditioning --- gibberellin --- “Candidatus Phytoplasma” --- dieback --- CaWRKY22 --- microbiota --- Sogatella furcifera --- PTI --- SAR --- Bacillus subtilis --- PRRs --- aphid resistance --- methyl salicylate --- regurgitant --- Myzus persicae --- Agrobacterium --- Ectropis obliqua --- Capsicum annuum --- polyphenol oxidase --- plant proteases --- plant immunity --- jasmonic acid --- calcium --- light dependent signalling --- Ralstonia solanacearum --- proteomics --- plant defense response --- Arabidopsis --- Lasiodiplodia theobromae --- azelaic acid --- citrus decline disease --- New Guinea impatiens --- replication process --- rice --- mango --- ?-3 fatty acid desaturase --- Ralstonia Solanacearum --- food security --- iTRAQ --- mitogen-activated protein kinase 4


Book
Cytochromes P450: Drug Metabolism, Bioactivation and Biodiversity 2.0
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book, "Cytochromes P450: Drug Metabolism, Bioactivation and Biodiversity", presents five papers on human cytochrome P450 (CYP) and P450 reductase, three reviews on the role of CYPs in humans and their use as biomarkers, six papers on CYPs in microorganisms, and one study on CYP in insects. The first paper reports the in silico modeling of human CYP3A4 access channels. The second uses structural methods to explain the mechanism-based inactivation of CYP3A4 by mibefradil, 6,7-dihydroxy-bergamottin, and azamulin. The third article compares electron transfer in CYP2C9 and CYP2C19 using structural and biochemical methods, and the fourth uses kinetic methods to study electron transfer to CYP2C8 allelic mutants. The fifth article characterizes electron transfer between the reductase and CYP using in silico and in vitro methods, focusing on the conformations of the reductase. Then, two reviews describe clinical implications in cardiology and oncology and the role of fatty acid metabolism in cardiology and skin diseases. The second review is on the potential use of circulating extracellular vesicles as biomarkers. Five papers analyze the CYPomes of diverse microorganisms: the Bacillus genus, Mycobacteria, the fungi Tremellomycetes, Cyanobacteria, and Streptomyces. The sixth focuses on a specific Mycobacterium CYP, CYP128, and its importance in M. tuberculosis. The subject of the last paper is CYP in Sogatella furcifera, a plant pest, and its resistance to the insecticide sulfoxaflor.

Keywords

Antibiotics --- Bacillus --- biosynthetic gene clusters --- comparative analysis --- cytochrome P450 monooxygenase --- Mycobacterium --- P450 diversity percentage --- P450 profiling --- secondary metabolites --- NADPH-cytochrome P450 reductase (CPR) --- microsomal cytochrome P450 (CYP) --- Cytochrome b5 (CYB5) --- protein dynamics --- electron-transfer (ET) --- protein–protein interaction --- cytochromes P450 --- CYP3A4 --- active site access channels --- cavities boundaries --- minimal cost paths --- CYP139A1 --- genome data mining --- host metabolism --- Mycobacterium tuberculosis --- polyketides --- tuberculosis --- cryptococcus --- cryptococcus neoformans --- CYP51 --- fungal pathogens --- genome data-mining --- human pathogens --- CYP diversity analysis --- tremellomycetes --- trichosporon --- mechanism-based inhibitor --- crystal structure --- CYP4 genes --- genetic polymorphisms --- 20-HETE --- fatty acid --- arachidonic acid --- SNPs --- molecular functionality --- metabolism --- lamellar ichthyosis --- Bietti’s crystalline dystrophy --- cytochrome P450 --- isoform --- membrane protein --- protein-membrane interactions --- enzyme substrate specificity --- mutagenesis --- molecular dynamics simulation --- Sogatella furcifera --- sulfoxaflor --- transcriptome --- RNA interference --- CYP2C8 --- polymorphisms --- reactive oxygen species --- paclitaxel --- cytochrome P450 reductase --- electron transfer --- extracellular vesicles --- exosomes --- extrahepatic tissues --- plasma --- circulatory CYPs --- CYP450 --- drug metabolism --- precision Cardio-Oncology --- precision medicine --- systems medicine --- cytochromes P450 monooxygenases --- Cyanobacteria --- gene-cluster diversity percentage --- mathematical formula --- phylogenetic analysis --- Streptomyces --- cytochrome P450 monooxygenases --- terpenes --- P450 blooming --- non-ribosomal peptides --- cytochrome P450 monooxygenenases --- CYP128A1 --- Mycobacterium tuberculosis H37Rv --- molecular dynamic simulations --- azole drugs --- menaquinone


Book
Plant Innate Immunity 2.0
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plants possess a rather complex and efficient immune system. During their evolutionary history, plants have developed various defense strategies in order to recognize and distinguishing between self and non-self, and face pathogens and animal pests. Accordingly, to study the plant innate immunity represents a new frontier in the plant pathology and crop protection fields. This book is structured in 6 sections. The first part introduces some basic and general aspects of the plant innate immunity and crop protection. Sections 2–5 focus on fungal and oomycete diseases (section 2), bacterial and phytoplasma diseases (section 3), virus diseases (section 4), and insect pests (section 5), with a number of case studies and plant–pathogen/pest interactions. The last section deals with plant disease detection and control. The book aims to highlight new trends in these relevant areas of plant sciences, providing a global perspective that is useful for future and innovative ideas.

Keywords

Bakraee --- tomato gray mold --- Citrus sinensis --- CDPKs --- salicylic acid --- calmodulin --- glycerol-3-phosphate --- biotic stress responses --- negative regulator --- rice blast --- metabolomics --- hydroperoxide lyase --- Bromoviridae --- induced defense responses --- leaf transcriptome --- calcium signature --- “Candidatus Liberibacter” --- garden impatiens --- Chilo suppressalis --- plant defence --- plant–virus interactions --- spectral distribution of light --- Magnaporthe oryzae --- plant-virus interaction --- biological control --- ultrastructure --- pathogenicity --- disease resistance --- Potato virus Y --- symbiosis --- N-hydroxypipecolic acid --- VaHAESA --- priming --- plant–microbe interactions --- systemic and local movement --- immunity --- CaWRKY40b --- plant protection products --- hypersensitive response --- cellulose synthase --- herbivore-induced defense response --- Macrosiphum euphorbiae --- RTNLB --- ISR --- RNA silencing --- herbivore-induced plant defenses --- disease management --- sustainable crop protection --- WRKY networks --- Camellia sinensis --- RNA-Seq --- transcriptional modulation --- ETI --- pathogenesis related-protein 2 --- cell wall --- basal defense --- candidate disease resistance gene --- MTI --- grapevine --- defense-related signaling pathways --- wounding --- ethylene --- CMLs --- Prune dwarf virus --- Arabidopsis thaliana --- SAR signalling --- innate immunity --- agrochemicals --- OsGID1 --- Nilaparvata lugens --- tobacco --- tomato leaf mold --- Solanum lycopersicum --- downy mildew --- pipecolic acid --- chemical elicitors --- bismerthiazol --- pre-conditioning --- gibberellin --- “Candidatus Phytoplasma” --- dieback --- CaWRKY22 --- microbiota --- Sogatella furcifera --- PTI --- SAR --- Bacillus subtilis --- PRRs --- aphid resistance --- methyl salicylate --- regurgitant --- Myzus persicae --- Agrobacterium --- Ectropis obliqua --- Capsicum annuum --- polyphenol oxidase --- plant proteases --- plant immunity --- jasmonic acid --- calcium --- light dependent signalling --- Ralstonia solanacearum --- proteomics --- plant defense response --- Arabidopsis --- Lasiodiplodia theobromae --- azelaic acid --- citrus decline disease --- New Guinea impatiens --- replication process --- rice --- mango --- ?-3 fatty acid desaturase --- Ralstonia Solanacearum --- food security --- iTRAQ --- mitogen-activated protein kinase 4 --- Bakraee --- tomato gray mold --- Citrus sinensis --- CDPKs --- salicylic acid --- calmodulin --- glycerol-3-phosphate --- biotic stress responses --- negative regulator --- rice blast --- metabolomics --- hydroperoxide lyase --- Bromoviridae --- induced defense responses --- leaf transcriptome --- calcium signature --- “Candidatus Liberibacter” --- garden impatiens --- Chilo suppressalis --- plant defence --- plant–virus interactions --- spectral distribution of light --- Magnaporthe oryzae --- plant-virus interaction --- biological control --- ultrastructure --- pathogenicity --- disease resistance --- Potato virus Y --- symbiosis --- N-hydroxypipecolic acid --- VaHAESA --- priming --- plant–microbe interactions --- systemic and local movement --- immunity --- CaWRKY40b --- plant protection products --- hypersensitive response --- cellulose synthase --- herbivore-induced defense response --- Macrosiphum euphorbiae --- RTNLB --- ISR --- RNA silencing --- herbivore-induced plant defenses --- disease management --- sustainable crop protection --- WRKY networks --- Camellia sinensis --- RNA-Seq --- transcriptional modulation --- ETI --- pathogenesis related-protein 2 --- cell wall --- basal defense --- candidate disease resistance gene --- MTI --- grapevine --- defense-related signaling pathways --- wounding --- ethylene --- CMLs --- Prune dwarf virus --- Arabidopsis thaliana --- SAR signalling --- innate immunity --- agrochemicals --- OsGID1 --- Nilaparvata lugens --- tobacco --- tomato leaf mold --- Solanum lycopersicum --- downy mildew --- pipecolic acid --- chemical elicitors --- bismerthiazol --- pre-conditioning --- gibberellin --- “Candidatus Phytoplasma” --- dieback --- CaWRKY22 --- microbiota --- Sogatella furcifera --- PTI --- SAR --- Bacillus subtilis --- PRRs --- aphid resistance --- methyl salicylate --- regurgitant --- Myzus persicae --- Agrobacterium --- Ectropis obliqua --- Capsicum annuum --- polyphenol oxidase --- plant proteases --- plant immunity --- jasmonic acid --- calcium --- light dependent signalling --- Ralstonia solanacearum --- proteomics --- plant defense response --- Arabidopsis --- Lasiodiplodia theobromae --- azelaic acid --- citrus decline disease --- New Guinea impatiens --- replication process --- rice --- mango --- ?-3 fatty acid desaturase --- Ralstonia Solanacearum --- food security --- iTRAQ --- mitogen-activated protein kinase 4

Listing 1 - 5 of 5
Sort by