Listing 1 - 10 of 28 | << page >> |
Sort by
|
Choose an application
The successful commercialization of advanced energy devices, including fuel cells and solar cells (e.g., dye-sensitized solar cells) is somewhat dependent on the cost, activity and durability of the electrocatalysts. Nowadays, precious metal electrodes are the most widely used. Accordingly, the manufacturing costs are relatively high, which constrains wide application. Recently, some reports have introduced some promising non-precious electrocatalysts to be exploited in both oxidation and reduction reactions. It was concluded that immobilization of the functional material on a proper support can distinctly improve catalytic activity. Moreover, due to the synergetic effect, metallic alloy nanoparticles show very good electrocatalytic activity in this regard. This Special Issue aims to cover the most recent progress and the advances in the field of the immobilized non-precious electrocatalysts. This includes, but is not limited to, non-precious electrocatalysts for alcohol (methanol, ethanol, etc.) oxidation, oxygen reduction reaction and electrolyte reduction in dye-sensitized solar cells.
Technology: general issues --- History of engineering & technology --- electrocatalysts --- bifunctional catalyst --- graphene --- dopants --- oxygen reduction reaction --- glassy carbon electrode --- metalloporphyrins --- Green Hydrogen --- SO2 electrolysis --- Westinghouse cycle --- carbon shell --- metallosupramolecular polymer --- hollow particles --- doping --- ethanol oxidation reaction --- palladium --- hollow carbon sphere --- alkaline medium --- dye sensitized solar cell --- SnO2-decorated graphene oxide --- counter electrode --- solar energy --- N, O-codoping --- polydopamine --- oxygen reduction --- oxygen evolution --- bifunctional --- electroactive surface area --- electrospinning --- Sn-incorporated Ni/C nanofibers --- Methanol --- Urea --- Cu3.8Ni-nanoalloy --- carbon nanofibers (NFs) --- urea oxidation --- fuel cells --- bilirubin oxidase --- direct electron transfer --- mediated electron transfer --- osmium polymer --- n/a
Choose an application
This Special Issue contains some recently experimental and theoretical advances in hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction, and the applications in water splitting, proton exchange membrane fuel cells, and lithium-ion batteries.
Technology: general issues --- History of engineering & technology --- Materials science --- SnSe --- 2D materials --- hydrogen evolution --- water splitting --- DFT calculations --- defect engineering --- proton exchange membrane fuel cell --- high energy efficiency --- durability --- degradation --- Pt/C catalyst --- anode --- flexible electronics --- nanosheets --- SnO2 --- oxygen reduction reaction --- fluorination --- density functional theory --- non-noble metal catalyst --- N-doped carbon catalyst --- hydrogen evolution reaction --- porous carbon --- PtNi alloy --- platinum --- nanoparticles --- electrochemistry --- reduced graphite oxide --- microwave --- ionic liquid --- tunable aryl alkyl ionic liquid --- metal-organic frameworks (MOF) --- electrocatalysis --- oxygen evolution reaction (OER) --- nickel --- ketjenblack --- Sm0.5Sr0.5Co1−xNixO3−δ --- perovskite --- cathode electrocatalyst --- OER/ORR --- two-dimensional metal-organic framework --- ligand --- single-atom catalysts --- oxygen evolution reaction --- n/a
Choose an application
The direct conversion of sunlight into electricity (photovoltaic or PV for short) is evolving rapidly, and is a technology becoming a mainstream clean energy production method. However, to compete with conventional energy production methods using fossil fuels, the conversion efficiency needs to be increased, and the manufacturing cost should be reduced further. Both of these require the improvement of solar energy materials, and the device architectures used for the conversion of light into electrical energy. This Special Issue presents the latest developments in some solar energy materials like Si, CdTe, CIGS, SnS and Perovskites), and the device structures suitable for next generation solar cells. In particular, the progress in graded bandgap multi-layer solar cells are presented in this Special Issue.
History of engineering & technology --- electroplating --- semiconductors --- large-area electronics --- characterisation --- solar cells --- perovskite solar cell --- hole blocking layer --- solution spin-coating --- TiO2/SnO2 layer --- anti-reflection coating --- potential-induced degradation --- solar cell --- plasma enhanced chemical vapor deposition --- organic solar cells --- perovskite solar cells --- encapsulation --- stability --- Cu(In,Ga)Se2 --- mini-module --- numerical simulation --- P1 shunt --- space charge region (SCR) --- TCAD --- transistor effect --- electrodeposition --- CdTe film --- two-electrode configuration --- thin films --- electroplating temperature --- photovoltaic --- CdTe --- CdS --- luminescence --- spectroscopy --- CdSe --- CdTe1−xSex --- photovoltaics --- review --- tin monosulfide --- tin disulfide --- chemical solution process --- absorber --- buffer --- renewable energy --- ethlammonium --- formamidinium --- microstructure --- perovskite --- SnS/SnS2 --- CdS/CdTe --- CIGS --- silicon --- electroplating of semiconductors
Choose an application
This book, entitled “Mesoporous Metal Oxide Films”, contains an editorial and a collection of ten research articles covering fundamental studies and applications of different metal oxide films. Mesoporous materials have been widely investigated and applied in many technological applications owing to their outstanding structural and physical properties. In this book, important developments in this fast-moving field are presented from various research groups around the world. Different preparation methods and applications of these novel and interesting materials have been reported, and it was demonstrated that mesoporosity has a direct impact on the properties and potential applications of such materials. The potential use of mesoporous metal oxide films and coatings with different morphology and structures is demonstrated in many technological applications, particularly chemical and electrochemical sensors, supercapacitors, solar cells, photoelectrodes, bioceramics, photonic switches, and anticorrosion agents.
History of engineering & technology --- SnO2 --- Metglas --- hemin --- H2O2 --- cyclic voltammetry --- magnetoelastic resonance --- sensor --- titanium dioxide --- mesoporous --- thin film --- multi-layered --- photoanode --- semiconductor --- photoelectrochemical water oxidation --- Mn2O3 --- mesoporous materials --- electrochemical characterizations --- electrode --- supercapacitors --- gadolinium oxide --- hydrazine --- p-nitrophenol --- electrochemical sensing --- amperometric --- selective sensor --- nanocrystal --- ZnO --- density of states --- optical and electrical properties --- TiO2 films --- Ag nanoparticles --- optical properties --- spectroelectrochemistry --- surface plasmon --- Fe-doped TiO2 --- hydrothermal --- GCE --- chemical sensor --- amperometry --- dye-sensitized solar cells --- working electrode --- TiO2 --- NiO nanoparticles --- electron transport --- corrosion --- guar gum --- coatings --- electrochemical impedance spectroscopy (EIS) --- SECM --- AFM --- calcium phosphate silicate --- PEG --- bioceramics --- sol-gel preparation --- hard tissue engineering --- metal oxide --- sol-gel --- supercapacitor --- photoelectrode --- dye sensitized solar cell --- NiO
Choose an application
The direct conversion of sunlight into electricity (photovoltaic or PV for short) is evolving rapidly, and is a technology becoming a mainstream clean energy production method. However, to compete with conventional energy production methods using fossil fuels, the conversion efficiency needs to be increased, and the manufacturing cost should be reduced further. Both of these require the improvement of solar energy materials, and the device architectures used for the conversion of light into electrical energy. This Special Issue presents the latest developments in some solar energy materials like Si, CdTe, CIGS, SnS and Perovskites), and the device structures suitable for next generation solar cells. In particular, the progress in graded bandgap multi-layer solar cells are presented in this Special Issue.
electroplating --- semiconductors --- large-area electronics --- characterisation --- solar cells --- perovskite solar cell --- hole blocking layer --- solution spin-coating --- TiO2/SnO2 layer --- anti-reflection coating --- potential-induced degradation --- solar cell --- plasma enhanced chemical vapor deposition --- organic solar cells --- perovskite solar cells --- encapsulation --- stability --- Cu(In,Ga)Se2 --- mini-module --- numerical simulation --- P1 shunt --- space charge region (SCR) --- TCAD --- transistor effect --- electrodeposition --- CdTe film --- two-electrode configuration --- thin films --- electroplating temperature --- photovoltaic --- CdTe --- CdS --- luminescence --- spectroscopy --- CdSe --- CdTe1−xSex --- photovoltaics --- review --- tin monosulfide --- tin disulfide --- chemical solution process --- absorber --- buffer --- renewable energy --- ethlammonium --- formamidinium --- microstructure --- perovskite --- SnS/SnS2 --- CdS/CdTe --- CIGS --- silicon --- electroplating of semiconductors
Choose an application
The book is devoted to the design, application and characterization of thin films and structures, with special emphasis on optical applications. It comprises ten papers—five featured and five regular—authored by scientists all over the world. Diverse materials are studied and their possible applications are demonstrated and discussed—transparent conductive coatings and structures from ZnO doped with Al and Ga and Ti-doped SnO2, polymers and nanosized zeolite thin films for optical sensing, TiO2 with linear and nonlinear optical properties, organic diamagnetic materials, broadband optical coatings, CrWN glass molding coatings, and silicon on insulator waveguides.
faraday rotation --- thin films --- magneto-optics --- organic material --- tolane derivatives --- optical coatings --- monitoring --- deposition --- titanium dioxide --- optical constants --- two-photon absorption --- nonlinear refraction --- scattering --- laser-induced deflection --- absorption measurement --- CrWN coatings --- microstructure evolution --- spinodal decomposition --- thermal stability --- hardness --- plasma enhanced magnetron sputtering --- sidewall roughness --- optical scattering loss --- silicon-on-insulator waveguide --- multilayer --- ZnO --- Ag --- TCO --- transmittance --- structure --- resistance --- SnO2 --- Ti-doped --- annealing temperature --- electrical resistivity --- optical sensors --- optical materials --- zeolites --- ellipsometry --- single wavelength ellipsometry --- spectroscopic ellipsometry --- poly(vinyl alcohol) copolymers --- humidity sensing --- Al-doped ZnO --- ALD technique --- transparent conductive layers --- LC display --- flexible PDLC devices --- transparent conductive coatings --- optical sensing --- broadband design --- linear and non-linear optical properties --- organic diamagnetic materials
Choose an application
The successful commercialization of advanced energy devices, including fuel cells and solar cells (e.g., dye-sensitized solar cells) is somewhat dependent on the cost, activity and durability of the electrocatalysts. Nowadays, precious metal electrodes are the most widely used. Accordingly, the manufacturing costs are relatively high, which constrains wide application. Recently, some reports have introduced some promising non-precious electrocatalysts to be exploited in both oxidation and reduction reactions. It was concluded that immobilization of the functional material on a proper support can distinctly improve catalytic activity. Moreover, due to the synergetic effect, metallic alloy nanoparticles show very good electrocatalytic activity in this regard. This Special Issue aims to cover the most recent progress and the advances in the field of the immobilized non-precious electrocatalysts. This includes, but is not limited to, non-precious electrocatalysts for alcohol (methanol, ethanol, etc.) oxidation, oxygen reduction reaction and electrolyte reduction in dye-sensitized solar cells.
electrocatalysts --- bifunctional catalyst --- graphene --- dopants --- oxygen reduction reaction --- glassy carbon electrode --- metalloporphyrins --- Green Hydrogen --- SO2 electrolysis --- Westinghouse cycle --- carbon shell --- metallosupramolecular polymer --- hollow particles --- doping --- ethanol oxidation reaction --- palladium --- hollow carbon sphere --- alkaline medium --- dye sensitized solar cell --- SnO2-decorated graphene oxide --- counter electrode --- solar energy --- N, O-codoping --- polydopamine --- oxygen reduction --- oxygen evolution --- bifunctional --- electroactive surface area --- electrospinning --- Sn-incorporated Ni/C nanofibers --- Methanol --- Urea --- Cu3.8Ni-nanoalloy --- carbon nanofibers (NFs) --- urea oxidation --- fuel cells --- bilirubin oxidase --- direct electron transfer --- mediated electron transfer --- osmium polymer --- n/a
Choose an application
This Special Issue contains some recently experimental and theoretical advances in hydrogen evolution reaction, oxygen evolution reaction, and oxygen reduction reaction, and the applications in water splitting, proton exchange membrane fuel cells, and lithium-ion batteries.
SnSe --- 2D materials --- hydrogen evolution --- water splitting --- DFT calculations --- defect engineering --- proton exchange membrane fuel cell --- high energy efficiency --- durability --- degradation --- Pt/C catalyst --- anode --- flexible electronics --- nanosheets --- SnO2 --- oxygen reduction reaction --- fluorination --- density functional theory --- non-noble metal catalyst --- N-doped carbon catalyst --- hydrogen evolution reaction --- porous carbon --- PtNi alloy --- platinum --- nanoparticles --- electrochemistry --- reduced graphite oxide --- microwave --- ionic liquid --- tunable aryl alkyl ionic liquid --- metal-organic frameworks (MOF) --- electrocatalysis --- oxygen evolution reaction (OER) --- nickel --- ketjenblack --- Sm0.5Sr0.5Co1−xNixO3−δ --- perovskite --- cathode electrocatalyst --- OER/ORR --- two-dimensional metal-organic framework --- ligand --- single-atom catalysts --- oxygen evolution reaction --- n/a
Choose an application
This book, entitled “Mesoporous Metal Oxide Films”, contains an editorial and a collection of ten research articles covering fundamental studies and applications of different metal oxide films. Mesoporous materials have been widely investigated and applied in many technological applications owing to their outstanding structural and physical properties. In this book, important developments in this fast-moving field are presented from various research groups around the world. Different preparation methods and applications of these novel and interesting materials have been reported, and it was demonstrated that mesoporosity has a direct impact on the properties and potential applications of such materials. The potential use of mesoporous metal oxide films and coatings with different morphology and structures is demonstrated in many technological applications, particularly chemical and electrochemical sensors, supercapacitors, solar cells, photoelectrodes, bioceramics, photonic switches, and anticorrosion agents.
SnO2 --- Metglas --- hemin --- H2O2 --- cyclic voltammetry --- magnetoelastic resonance --- sensor --- titanium dioxide --- mesoporous --- thin film --- multi-layered --- photoanode --- semiconductor --- photoelectrochemical water oxidation --- Mn2O3 --- mesoporous materials --- electrochemical characterizations --- electrode --- supercapacitors --- gadolinium oxide --- hydrazine --- p-nitrophenol --- electrochemical sensing --- amperometric --- selective sensor --- nanocrystal --- ZnO --- density of states --- optical and electrical properties --- TiO2 films --- Ag nanoparticles --- optical properties --- spectroelectrochemistry --- surface plasmon --- Fe-doped TiO2 --- hydrothermal --- GCE --- chemical sensor --- amperometry --- dye-sensitized solar cells --- working electrode --- TiO2 --- NiO nanoparticles --- electron transport --- corrosion --- guar gum --- coatings --- electrochemical impedance spectroscopy (EIS) --- SECM --- AFM --- calcium phosphate silicate --- PEG --- bioceramics --- sol-gel preparation --- hard tissue engineering --- metal oxide --- sol-gel --- supercapacitor --- photoelectrode --- dye sensitized solar cell --- NiO
Choose an application
The conversion and storage of renewable energy sources is key to the transition from a fossil-fuel-based economy to a low-carbon society. Many new game-changing materials have already impacted our lives and contributed to a reduction in carbon dioxide emissions, such as high-efficiency photovoltaic cells, blue light-emitting diodes, and cathodes for Li-ion batteries. However, new breakthroughs in materials science and technology are required to boost the clean energy transition. All success stories in materials science are built upon a tailored control of the interconnected processes that take place at the nanoscale, such as charge excitation, charge transport and recombination, ionic diffusion, intercalation, and the interfacial transfer of matter and charge. Nanostructured materials, thanks to their ultra-small building blocks and the high interface-to-volume ratio, offer a rich toolbox to scientists that aspire to improve the energy conversion efficiency or the power and energy density of a material. Furthermore, new phenomena arise in nanoparticles, such as surface plasmon resonance, superparamegntism, and exciton confinement. The ten articles published in this Special Issue showcase the different applications of nanomaterials in the field of energy storage and conversion, including electrodes for Li-ion batteries and beyond, photovoltaic materials, pyroelectric energy harvesting, and (photo)catalytic processes.
nanoparticle --- nanoalloy --- catalyst --- CO2 reduction --- hydrocarbon --- synthetic fuel --- iron --- cobalt --- perovskite solar cell --- hole transport layer --- CuCrO2 nanoparticles --- thermal stability --- light stability --- aluminum ion batteries --- reduced graphene oxide --- tin dioxide --- 3D electrode materials --- mechanical properties --- TiO2 --- azo dye --- wastewater treatment --- photocatalysis --- sodium formate --- dry etching --- black silicon --- photovoltaics --- plasmonics --- heterogeneous catalysis --- nanoparticles --- single molecule localization --- super-resolution microscopy --- surface-enhanced Raman spectroscopy --- Li-ion batteries --- anodes --- intermetallics --- silicon --- composites --- nanomaterials --- coating --- mechanochemistry --- zinc sulfide --- wurtzite --- co-precipitation synthesis --- solvent recycling --- green synthesis --- scaling up --- pilot plant --- chalcopyrite compounds --- nanocrystals --- hydrothermal --- spin coating --- EIS --- conductivity --- lithium-ion batteries --- SnO2 --- nanoarray --- anode --- high-rate --- n/a
Listing 1 - 10 of 28 | << page >> |
Sort by
|