Listing 1 - 4 of 4 |
Sort by
|
Choose an application
The deployment of distributed renewable generation and e-mobility systems is creating a demand for improved dynamic performance, flexibility, and resilience in electrical grids. Various energy storages, such as stationary and electric vehicle batteries, together with power electronic interfaces, will play a key role in addressing these requests thanks to their enhanced functionality, fast response times, and configuration flexibility. For the large-scale implementation of this technology, the associated enabling developments are becoming of paramount importance. These include energy management algorithms; optimal sizing and coordinated control strategies of different storage technologies, including e-mobility storage; power electronic converters for interfacing renewables and battery systems, which allow for advanced interactions with the grid; and increase in round-trip efficiencies by means of advanced materials, components, and algorithms. This Special Issue contains the developments that have been published b researchers in the areas of power electronics, energy management and battery storage. A range of potential solutions to the existing barriers is presented, aiming to make the most out of these emerging technologies.
Technology: general issues --- Chemical engineering --- high-gain non-inverting buck-boost converter --- continuous conduction mode (CCM) --- discontinuous conduction mode --- electric vehicles --- stationary battery energy storage system --- battery automated system --- online state estimation --- thermal modeling --- first-order model --- second-order model --- Kalman filtering --- impedance network --- Z-source --- quasi-Z-source --- voltage source inverter --- voltage distortions --- machine learning --- Kalman filter --- thermal modelling --- online prediction --- electromagnetic impedance spectroscopy --- computational cost --- ANPC converter --- EV charging --- multilevel converter --- PWM methods --- SiC MOSFETs --- residential energy storage --- battery energy storage systems --- standards --- grid interfaceconverters --- intellectual property --- bidirectional converters --- AC-DC power converters --- DC-DC powerconverters --- multilevel converters --- partial power converters ---
Choose an application
Nowadays, power electronics is an enabling technology in the energy development scenario. Furthermore, power electronics is strictly linked with several fields of technological growth, such as consumer electronics, IT and communications, electrical networks, utilities, industrial drives and robotics, and transportation and automotive sectors. Moreover, the widespread use of power electronics enables cost savings and minimization of losses in several technology applications required for sustainable economic growth. The topologies of DC–DC power converters and switching converters are under continuous development and deserve special attention to highlight the advantages and disadvantages for use increasingly oriented towards green and sustainable development. DC–DC converter topologies are developed in consideration of higher efficiency, reliable control switching strategies, and fault-tolerant configurations. Several types of switching converter topologies are involved in isolated DC–DC converter and nonisolated DC–DC converter solutions operating in hard-switching and soft-switching conditions. Switching converters have applications in a broad range of areas in both low and high power densities. The articles presented in the Special Issue titled "Advanced DC-DC Power Converters and Switching Converters" consolidate the work on the investigation of the switching converter topology considering the technological advances offered by innovative wide-bandgap devices and performance optimization methods in control strategies used.
History of engineering & technology --- interleaved operation --- three-winding coupled inductor --- high step-up DC–DC converter --- DC/DC converter --- multi-input-port --- bidirectional --- energy storage --- three-phase bidirectional isolated DC-DC converter --- burst-mode switching --- high-frequency transformer configurations --- phase-shift modulation --- intermittent switching --- three-phase dual-active bridge --- bidirectional converter --- high efficiency --- GaN --- SiC --- buck-boost converter --- high switching frequency --- electric vehicle (EV) --- fast charging --- interleaved dc–dc converter --- SiC devices --- Si devices --- Component Connection Method --- power electronics-based systems --- stability analysis --- state-space methods --- virtual synchronous generators --- DC-DC converters --- photovoltaics --- single-diode model --- state-space --- multi-port dual-active bridge (DAB) converter --- wide-band-gap (WBG) semiconductors --- silicon carbide (SiC) MOSFETs --- power converter --- automotive --- battery charger --- circuit modelling --- power electronics --- SiC MOSFET --- interleaved operation --- three-winding coupled inductor --- high step-up DC–DC converter --- DC/DC converter --- multi-input-port --- bidirectional --- energy storage --- three-phase bidirectional isolated DC-DC converter --- burst-mode switching --- high-frequency transformer configurations --- phase-shift modulation --- intermittent switching --- three-phase dual-active bridge --- bidirectional converter --- high efficiency --- GaN --- SiC --- buck-boost converter --- high switching frequency --- electric vehicle (EV) --- fast charging --- interleaved dc–dc converter --- SiC devices --- Si devices --- Component Connection Method --- power electronics-based systems --- stability analysis --- state-space methods --- virtual synchronous generators --- DC-DC converters --- photovoltaics --- single-diode model --- state-space --- multi-port dual-active bridge (DAB) converter --- wide-band-gap (WBG) semiconductors --- silicon carbide (SiC) MOSFETs --- power converter --- automotive --- battery charger --- circuit modelling --- power electronics --- SiC MOSFET
Choose an application
Nowadays, power electronics is an enabling technology in the energy development scenario. Furthermore, power electronics is strictly linked with several fields of technological growth, such as consumer electronics, IT and communications, electrical networks, utilities, industrial drives and robotics, and transportation and automotive sectors. Moreover, the widespread use of power electronics enables cost savings and minimization of losses in several technology applications required for sustainable economic growth. The topologies of DC–DC power converters and switching converters are under continuous development and deserve special attention to highlight the advantages and disadvantages for use increasingly oriented towards green and sustainable development. DC–DC converter topologies are developed in consideration of higher efficiency, reliable control switching strategies, and fault-tolerant configurations. Several types of switching converter topologies are involved in isolated DC–DC converter and nonisolated DC–DC converter solutions operating in hard-switching and soft-switching conditions. Switching converters have applications in a broad range of areas in both low and high power densities. The articles presented in the Special Issue titled "Advanced DC-DC Power Converters and Switching Converters" consolidate the work on the investigation of the switching converter topology considering the technological advances offered by innovative wide-bandgap devices and performance optimization methods in control strategies used.
History of engineering & technology --- interleaved operation --- three-winding coupled inductor --- high step-up DC–DC converter --- DC/DC converter --- multi-input-port --- bidirectional --- energy storage --- three-phase bidirectional isolated DC-DC converter --- burst-mode switching --- high-frequency transformer configurations --- phase-shift modulation --- intermittent switching --- three-phase dual-active bridge --- bidirectional converter --- high efficiency --- GaN --- SiC --- buck-boost converter --- high switching frequency --- electric vehicle (EV) --- fast charging --- interleaved dc–dc converter --- SiC devices --- Si devices --- Component Connection Method --- power electronics-based systems --- stability analysis --- state-space methods --- virtual synchronous generators --- DC-DC converters --- photovoltaics --- single-diode model --- state-space --- multi-port dual-active bridge (DAB) converter --- wide-band-gap (WBG) semiconductors --- silicon carbide (SiC) MOSFETs --- power converter --- automotive --- battery charger --- circuit modelling --- power electronics --- SiC MOSFET
Choose an application
Nowadays, power electronics is an enabling technology in the energy development scenario. Furthermore, power electronics is strictly linked with several fields of technological growth, such as consumer electronics, IT and communications, electrical networks, utilities, industrial drives and robotics, and transportation and automotive sectors. Moreover, the widespread use of power electronics enables cost savings and minimization of losses in several technology applications required for sustainable economic growth. The topologies of DC–DC power converters and switching converters are under continuous development and deserve special attention to highlight the advantages and disadvantages for use increasingly oriented towards green and sustainable development. DC–DC converter topologies are developed in consideration of higher efficiency, reliable control switching strategies, and fault-tolerant configurations. Several types of switching converter topologies are involved in isolated DC–DC converter and nonisolated DC–DC converter solutions operating in hard-switching and soft-switching conditions. Switching converters have applications in a broad range of areas in both low and high power densities. The articles presented in the Special Issue titled "Advanced DC-DC Power Converters and Switching Converters" consolidate the work on the investigation of the switching converter topology considering the technological advances offered by innovative wide-bandgap devices and performance optimization methods in control strategies used.
interleaved operation --- three-winding coupled inductor --- high step-up DC–DC converter --- DC/DC converter --- multi-input-port --- bidirectional --- energy storage --- three-phase bidirectional isolated DC-DC converter --- burst-mode switching --- high-frequency transformer configurations --- phase-shift modulation --- intermittent switching --- three-phase dual-active bridge --- bidirectional converter --- high efficiency --- GaN --- SiC --- buck-boost converter --- high switching frequency --- electric vehicle (EV) --- fast charging --- interleaved dc–dc converter --- SiC devices --- Si devices --- Component Connection Method --- power electronics-based systems --- stability analysis --- state-space methods --- virtual synchronous generators --- DC-DC converters --- photovoltaics --- single-diode model --- state-space --- multi-port dual-active bridge (DAB) converter --- wide-band-gap (WBG) semiconductors --- silicon carbide (SiC) MOSFETs --- power converter --- automotive --- battery charger --- circuit modelling --- power electronics --- SiC MOSFET
Listing 1 - 4 of 4 |
Sort by
|