Narrow your search

Library

FARO (5)

KU Leuven (5)

LUCA School of Arts (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

ULiège (5)

VIVES (5)

Vlaams Parlement (5)

More...

Resource type

book (14)


Language

English (14)


Year
From To Submit

2022 (2)

2021 (9)

2020 (3)

Listing 1 - 10 of 14 << page
of 2
>>
Sort by

Book
Advanced DC-DC Power Converters and Switching Converters
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nowadays, power electronics is an enabling technology in the energy development scenario. Furthermore, power electronics is strictly linked with several fields of technological growth, such as consumer electronics, IT and communications, electrical networks, utilities, industrial drives and robotics, and transportation and automotive sectors. Moreover, the widespread use of power electronics enables cost savings and minimization of losses in several technology applications required for sustainable economic growth. The topologies of DC–DC power converters and switching converters are under continuous development and deserve special attention to highlight the advantages and disadvantages for use increasingly oriented towards green and sustainable development. DC–DC converter topologies are developed in consideration of higher efficiency, reliable control switching strategies, and fault-tolerant configurations. Several types of switching converter topologies are involved in isolated DC–DC converter and nonisolated DC–DC converter solutions operating in hard-switching and soft-switching conditions. Switching converters have applications in a broad range of areas in both low and high power densities. The articles presented in the Special Issue titled "Advanced DC-DC Power Converters and Switching Converters" consolidate the work on the investigation of the switching converter topology considering the technological advances offered by innovative wide-bandgap devices and performance optimization methods in control strategies used.

Keywords

History of engineering & technology --- interleaved operation --- three-winding coupled inductor --- high step-up DC–DC converter --- DC/DC converter --- multi-input-port --- bidirectional --- energy storage --- three-phase bidirectional isolated DC-DC converter --- burst-mode switching --- high-frequency transformer configurations --- phase-shift modulation --- intermittent switching --- three-phase dual-active bridge --- bidirectional converter --- high efficiency --- GaN --- SiC --- buck-boost converter --- high switching frequency --- electric vehicle (EV) --- fast charging --- interleaved dc–dc converter --- SiC devices --- Si devices --- Component Connection Method --- power electronics-based systems --- stability analysis --- state-space methods --- virtual synchronous generators --- DC-DC converters --- photovoltaics --- single-diode model --- state-space --- multi-port dual-active bridge (DAB) converter --- wide-band-gap (WBG) semiconductors --- silicon carbide (SiC) MOSFETs --- power converter --- automotive --- battery charger --- circuit modelling --- power electronics --- SiC MOSFET --- interleaved operation --- three-winding coupled inductor --- high step-up DC–DC converter --- DC/DC converter --- multi-input-port --- bidirectional --- energy storage --- three-phase bidirectional isolated DC-DC converter --- burst-mode switching --- high-frequency transformer configurations --- phase-shift modulation --- intermittent switching --- three-phase dual-active bridge --- bidirectional converter --- high efficiency --- GaN --- SiC --- buck-boost converter --- high switching frequency --- electric vehicle (EV) --- fast charging --- interleaved dc–dc converter --- SiC devices --- Si devices --- Component Connection Method --- power electronics-based systems --- stability analysis --- state-space methods --- virtual synchronous generators --- DC-DC converters --- photovoltaics --- single-diode model --- state-space --- multi-port dual-active bridge (DAB) converter --- wide-band-gap (WBG) semiconductors --- silicon carbide (SiC) MOSFETs --- power converter --- automotive --- battery charger --- circuit modelling --- power electronics --- SiC MOSFET


Book
Challenges and New Trends in Power Electronic Devices Reliability
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The rapid increase in new power electronic devices and converters for electric transportation and smart grid technologies requires a deepanalysis of their component performances, considering all of the different environmental scenarios, overload conditions, and high stressoperations. Therefore, evaluation of the reliability and availability of these devices becomes fundamental both from technical and economicalpoints of view. The rapid evolution of technologies and the high reliability level offered by these components have shown that estimating reliability through the traditional approaches is difficult, as historical failure data and/or past observed scenarios demonstrate. With the aim topropose new approaches for the evaluation of reliability, in this book, eleven innovative contributions are collected, all focusedon the reliability assessment of power electronic devices and related components.

Keywords

Technology: general issues --- Energy industries & utilities --- photovoltaic system --- battery --- DC-coupled configuration --- AC-coupled configuration --- mission profile --- reliability --- LED --- thermal cycling test --- accelerated test --- solder joint --- cracks --- current harmonics --- voltage harmonics --- power electronic converters --- cables --- capacitors --- PPS --- high-power thyristors --- reverse recovery currents --- electromagnetic launching field --- segmented LSTM --- microgrid inverter --- IGBT reliability --- online evaluation --- fusion algorithm --- multi-chip IGBT module --- bond wire --- module transconductance --- temperature calibration --- failure monitoring --- sensor lamp --- low-light mode --- high-light mode --- AC motor drive --- junction temperature --- lifetime prediction --- power MOSFET --- loss modeling --- SiC MOSFET --- AlGaN/GaN HEMT --- cascode structure --- single event effects --- technology computer-aided design simulation --- heavy-ion irradiation experiment --- photovoltaic systems --- DC/AC converter --- maintenance --- power system faults --- availability --- condition monitoring --- power device --- power electronics --- photovoltaic system --- battery --- DC-coupled configuration --- AC-coupled configuration --- mission profile --- reliability --- LED --- thermal cycling test --- accelerated test --- solder joint --- cracks --- current harmonics --- voltage harmonics --- power electronic converters --- cables --- capacitors --- PPS --- high-power thyristors --- reverse recovery currents --- electromagnetic launching field --- segmented LSTM --- microgrid inverter --- IGBT reliability --- online evaluation --- fusion algorithm --- multi-chip IGBT module --- bond wire --- module transconductance --- temperature calibration --- failure monitoring --- sensor lamp --- low-light mode --- high-light mode --- AC motor drive --- junction temperature --- lifetime prediction --- power MOSFET --- loss modeling --- SiC MOSFET --- AlGaN/GaN HEMT --- cascode structure --- single event effects --- technology computer-aided design simulation --- heavy-ion irradiation experiment --- photovoltaic systems --- DC/AC converter --- maintenance --- power system faults --- availability --- condition monitoring --- power device --- power electronics


Book
Advanced DC-DC Power Converters and Switching Converters
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nowadays, power electronics is an enabling technology in the energy development scenario. Furthermore, power electronics is strictly linked with several fields of technological growth, such as consumer electronics, IT and communications, electrical networks, utilities, industrial drives and robotics, and transportation and automotive sectors. Moreover, the widespread use of power electronics enables cost savings and minimization of losses in several technology applications required for sustainable economic growth. The topologies of DC–DC power converters and switching converters are under continuous development and deserve special attention to highlight the advantages and disadvantages for use increasingly oriented towards green and sustainable development. DC–DC converter topologies are developed in consideration of higher efficiency, reliable control switching strategies, and fault-tolerant configurations. Several types of switching converter topologies are involved in isolated DC–DC converter and nonisolated DC–DC converter solutions operating in hard-switching and soft-switching conditions. Switching converters have applications in a broad range of areas in both low and high power densities. The articles presented in the Special Issue titled "Advanced DC-DC Power Converters and Switching Converters" consolidate the work on the investigation of the switching converter topology considering the technological advances offered by innovative wide-bandgap devices and performance optimization methods in control strategies used.


Book
Challenges and New Trends in Power Electronic Devices Reliability
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The rapid increase in new power electronic devices and converters for electric transportation and smart grid technologies requires a deepanalysis of their component performances, considering all of the different environmental scenarios, overload conditions, and high stressoperations. Therefore, evaluation of the reliability and availability of these devices becomes fundamental both from technical and economicalpoints of view. The rapid evolution of technologies and the high reliability level offered by these components have shown that estimating reliability through the traditional approaches is difficult, as historical failure data and/or past observed scenarios demonstrate. With the aim topropose new approaches for the evaluation of reliability, in this book, eleven innovative contributions are collected, all focusedon the reliability assessment of power electronic devices and related components.


Book
Challenges and New Trends in Power Electronic Devices Reliability
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The rapid increase in new power electronic devices and converters for electric transportation and smart grid technologies requires a deepanalysis of their component performances, considering all of the different environmental scenarios, overload conditions, and high stressoperations. Therefore, evaluation of the reliability and availability of these devices becomes fundamental both from technical and economicalpoints of view. The rapid evolution of technologies and the high reliability level offered by these components have shown that estimating reliability through the traditional approaches is difficult, as historical failure data and/or past observed scenarios demonstrate. With the aim topropose new approaches for the evaluation of reliability, in this book, eleven innovative contributions are collected, all focusedon the reliability assessment of power electronic devices and related components.


Book
Advanced DC-DC Power Converters and Switching Converters
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Nowadays, power electronics is an enabling technology in the energy development scenario. Furthermore, power electronics is strictly linked with several fields of technological growth, such as consumer electronics, IT and communications, electrical networks, utilities, industrial drives and robotics, and transportation and automotive sectors. Moreover, the widespread use of power electronics enables cost savings and minimization of losses in several technology applications required for sustainable economic growth. The topologies of DC–DC power converters and switching converters are under continuous development and deserve special attention to highlight the advantages and disadvantages for use increasingly oriented towards green and sustainable development. DC–DC converter topologies are developed in consideration of higher efficiency, reliable control switching strategies, and fault-tolerant configurations. Several types of switching converter topologies are involved in isolated DC–DC converter and nonisolated DC–DC converter solutions operating in hard-switching and soft-switching conditions. Switching converters have applications in a broad range of areas in both low and high power densities. The articles presented in the Special Issue titled "Advanced DC-DC Power Converters and Switching Converters" consolidate the work on the investigation of the switching converter topology considering the technological advances offered by innovative wide-bandgap devices and performance optimization methods in control strategies used.


Book
Energy Efficiency in Electric Motors, Drives, Power Converters and Related Systems
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Today, there is a great deal of attention focused on sustainable growth worldwide. The increase in efficiency in the use of energy may even, in this historical moment, bring greater benefit than the use of renewable energies. Electricity appears to be the most sustainable of energies and the most promising hope for a planet capable of growing without compromising its own health and that of its inhabitants. Power electronics and electrical drives are the key technologies that will allow energy savings through the reduction of energy losses in many applications. This Special Issue has collected several scientific contributions related to energy efficiency in electrical equipment. Some articles are dedicated to the use and optimization of permanent magnet motors, which allow obtaining the highest level of efficiency. Most of the contributions describe the energy improvements that can be achieved with power electronics and the use of suitable control techniques. Last but not least, some articles describe interesting solutions for hybrid vehicles, which were created mainly to save energy in the smartest way possible.

Keywords

LLC resonant converter --- resonant transformer --- fringing effect --- adjustable magnetizing inductance --- efficiency --- optimal design --- oil pump --- brushless DC --- motor --- robust --- vehicles --- eddy current coupling --- hybrid excited --- magnetic equivalent circuit --- magnetic field analysis --- torque-slip characteristic --- switched inductor capacitor converter --- a power converter --- energy transfer media --- ripple voltage --- conduction loss --- Hybrid Electric Vehicle (HEV) --- series architecture --- supercapacitor --- Energy Management System (EMS) --- storage sizing --- energy efficiency --- backlight --- DC-DC converter --- passive snubber --- voltage stress --- maximum-torque-per-ampere (MTPA) --- torque control --- per unit --- IPMSM --- SiC devices --- Si devices --- three level NPC inverter --- three level T-NPC inverter --- two level SiC MOSFET inverter --- overvoltages --- heat sink volume --- motor emulator --- power loss --- current tracking --- finite set model predictive control --- medium frequency transformer --- power electronic transformer --- Solid State Transformer (SST) --- railway electric traction --- Modular Multilevel Converter (MMC) --- soft-switching --- DC–DC converter --- multi-input converter --- battery --- hybrid electric vehicle (HEV), efficiency --- permanent magnet motor --- synchronous motor --- brushless drive --- industrial application --- turbocompound --- turbocharger --- hybrid electric vehicle (HEV) --- fuel economy


Book
Energy Efficiency in Electric Motors, Drives, Power Converters and Related Systems
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Today, there is a great deal of attention focused on sustainable growth worldwide. The increase in efficiency in the use of energy may even, in this historical moment, bring greater benefit than the use of renewable energies. Electricity appears to be the most sustainable of energies and the most promising hope for a planet capable of growing without compromising its own health and that of its inhabitants. Power electronics and electrical drives are the key technologies that will allow energy savings through the reduction of energy losses in many applications. This Special Issue has collected several scientific contributions related to energy efficiency in electrical equipment. Some articles are dedicated to the use and optimization of permanent magnet motors, which allow obtaining the highest level of efficiency. Most of the contributions describe the energy improvements that can be achieved with power electronics and the use of suitable control techniques. Last but not least, some articles describe interesting solutions for hybrid vehicles, which were created mainly to save energy in the smartest way possible.

Keywords

History of engineering & technology --- LLC resonant converter --- resonant transformer --- fringing effect --- adjustable magnetizing inductance --- efficiency --- optimal design --- oil pump --- brushless DC --- motor --- robust --- vehicles --- eddy current coupling --- hybrid excited --- magnetic equivalent circuit --- magnetic field analysis --- torque-slip characteristic --- switched inductor capacitor converter --- a power converter --- energy transfer media --- ripple voltage --- conduction loss --- Hybrid Electric Vehicle (HEV) --- series architecture --- supercapacitor --- Energy Management System (EMS) --- storage sizing --- energy efficiency --- backlight --- DC-DC converter --- passive snubber --- voltage stress --- maximum-torque-per-ampere (MTPA) --- torque control --- per unit --- IPMSM --- SiC devices --- Si devices --- three level NPC inverter --- three level T-NPC inverter --- two level SiC MOSFET inverter --- overvoltages --- heat sink volume --- motor emulator --- power loss --- current tracking --- finite set model predictive control --- medium frequency transformer --- power electronic transformer --- Solid State Transformer (SST) --- railway electric traction --- Modular Multilevel Converter (MMC) --- soft-switching --- DC–DC converter --- multi-input converter --- battery --- hybrid electric vehicle (HEV), efficiency --- permanent magnet motor --- synchronous motor --- brushless drive --- industrial application --- turbocompound --- turbocharger --- hybrid electric vehicle (HEV) --- fuel economy --- LLC resonant converter --- resonant transformer --- fringing effect --- adjustable magnetizing inductance --- efficiency --- optimal design --- oil pump --- brushless DC --- motor --- robust --- vehicles --- eddy current coupling --- hybrid excited --- magnetic equivalent circuit --- magnetic field analysis --- torque-slip characteristic --- switched inductor capacitor converter --- a power converter --- energy transfer media --- ripple voltage --- conduction loss --- Hybrid Electric Vehicle (HEV) --- series architecture --- supercapacitor --- Energy Management System (EMS) --- storage sizing --- energy efficiency --- backlight --- DC-DC converter --- passive snubber --- voltage stress --- maximum-torque-per-ampere (MTPA) --- torque control --- per unit --- IPMSM --- SiC devices --- Si devices --- three level NPC inverter --- three level T-NPC inverter --- two level SiC MOSFET inverter --- overvoltages --- heat sink volume --- motor emulator --- power loss --- current tracking --- finite set model predictive control --- medium frequency transformer --- power electronic transformer --- Solid State Transformer (SST) --- railway electric traction --- Modular Multilevel Converter (MMC) --- soft-switching --- DC–DC converter --- multi-input converter --- battery --- hybrid electric vehicle (HEV), efficiency --- permanent magnet motor --- synchronous motor --- brushless drive --- industrial application --- turbocompound --- turbocharger --- hybrid electric vehicle (HEV) --- fuel economy


Book
Energy Efficiency in Electric Motors, Drives, Power Converters and Related Systems
Author:
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Today, there is a great deal of attention focused on sustainable growth worldwide. The increase in efficiency in the use of energy may even, in this historical moment, bring greater benefit than the use of renewable energies. Electricity appears to be the most sustainable of energies and the most promising hope for a planet capable of growing without compromising its own health and that of its inhabitants. Power electronics and electrical drives are the key technologies that will allow energy savings through the reduction of energy losses in many applications. This Special Issue has collected several scientific contributions related to energy efficiency in electrical equipment. Some articles are dedicated to the use and optimization of permanent magnet motors, which allow obtaining the highest level of efficiency. Most of the contributions describe the energy improvements that can be achieved with power electronics and the use of suitable control techniques. Last but not least, some articles describe interesting solutions for hybrid vehicles, which were created mainly to save energy in the smartest way possible.

Keywords

History of engineering & technology --- LLC resonant converter --- resonant transformer --- fringing effect --- adjustable magnetizing inductance --- efficiency --- optimal design --- oil pump --- brushless DC --- motor --- robust --- vehicles --- eddy current coupling --- hybrid excited --- magnetic equivalent circuit --- magnetic field analysis --- torque-slip characteristic --- switched inductor capacitor converter --- a power converter --- energy transfer media --- ripple voltage --- conduction loss --- Hybrid Electric Vehicle (HEV) --- series architecture --- supercapacitor --- Energy Management System (EMS) --- storage sizing --- energy efficiency --- backlight --- DC-DC converter --- passive snubber --- voltage stress --- maximum-torque-per-ampere (MTPA) --- torque control --- per unit --- IPMSM --- SiC devices --- Si devices --- three level NPC inverter --- three level T-NPC inverter --- two level SiC MOSFET inverter --- overvoltages --- heat sink volume --- motor emulator --- power loss --- current tracking --- finite set model predictive control --- medium frequency transformer --- power electronic transformer --- Solid State Transformer (SST) --- railway electric traction --- Modular Multilevel Converter (MMC) --- soft-switching --- DC–DC converter --- multi-input converter --- battery --- hybrid electric vehicle (HEV), efficiency --- permanent magnet motor --- synchronous motor --- brushless drive --- industrial application --- turbocompound --- turbocharger --- hybrid electric vehicle (HEV) --- fuel economy


Book
Industrial and Technological Applications of Power Electronics Systems
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The Special Issue "Industrial and Technological Applications of Power Electronics Systems" focuses on: - new strategies of control for electric machines, including sensorless control and fault diagnosis; - existing and emerging industrial applications of GaN and SiC-based converters; - modern methods for electromagnetic compatibility. The book covers topics such as control systems, fault diagnosis, converters, inverters, and electromagnetic interference in power electronics systems. The Special Issue includes 19 scientific papers by industry experts and worldwide professors in the area of electrical engineering.

Keywords

Research & information: general --- Technology: general issues --- active disturbance rejection controller (ADRC) --- direct torque control (DTC) --- full-order observer --- sensorless --- six-phase induction motor (6PIM) --- stator resistance estimator --- average air gap length --- dc-dc power converters --- gapped magnetic core --- magnetic permeability --- magnetizing inductance --- medium frequency transformer --- systems control --- electromagnetic compatibility --- conducted interference --- DC-DC power converters --- FPGA --- random modulation --- bidirectional converter --- multilevel converter --- resonant converter --- SiC MOSFET --- high-voltage converter --- switched capacitor converter --- extended Kalman filter (EKF) --- permanent magnet synchronous generator (PMSG) --- fault diagnosis (FD) --- stator inter-turn short circuit --- conducted electromagnetic interference --- aggregated electromagnetic interference --- power electronic interfaces --- frequency beat --- modular --- voltage source inverter (VSI) --- multipulse --- 12-pulse --- pulse amplitude modulation (PAM) --- pulse width modulation (PWM) --- three-level --- coupled reactors --- wireless power transfer --- inductive power transmission --- AC-DC power converters --- T-type inverter --- GaN-transistors --- electromagnetic coupling --- EV battery --- electric vehicles --- fast battery charging --- local transport --- DC micro grid --- drive voltage frequency converter --- big power DC/DC converter --- interior permanent magnet motors --- maximum torque per ampere --- sensorless control --- adaptive control --- resonant inverter --- dielectric barrier discharge --- nonthermal plasma --- treatment of plastic surface --- decontamination of organic loose products --- silicon carbide --- dual active bridge dc-dc converter --- power electronic traction transformer --- 3 kV DC railway traction --- electric multiple unit --- DC-DC converter --- high-voltage-gain converter --- switched-capacitor converter --- inductiveless converter --- series active power filters --- multipulse converters --- power conditioning --- power quality --- power distribution --- reverse power flow --- compensation for nonactive current --- voltage regulation --- UPQC --- boost converters --- DC–DC power converters --- GaN switch --- resonant power conversion --- zero-current switching (ZCS) --- zero-voltage switching (ZVS) --- grasshopper optimization algorithm (GOA) --- particle swarm optimization (PSO) --- selective harmonics elimination PWM (SHEPWM) --- square-type matrix converters --- pulse width modulation --- multiphase systems --- matrix converter --- multipulse voltage converter --- nearest voltage modulation --- pulse width regulation --- low-switching modulation technique --- multipulse matrix converter with coupled reactors --- active disturbance rejection controller (ADRC) --- direct torque control (DTC) --- full-order observer --- sensorless --- six-phase induction motor (6PIM) --- stator resistance estimator --- average air gap length --- dc-dc power converters --- gapped magnetic core --- magnetic permeability --- magnetizing inductance --- medium frequency transformer --- systems control --- electromagnetic compatibility --- conducted interference --- DC-DC power converters --- FPGA --- random modulation --- bidirectional converter --- multilevel converter --- resonant converter --- SiC MOSFET --- high-voltage converter --- switched capacitor converter --- extended Kalman filter (EKF) --- permanent magnet synchronous generator (PMSG) --- fault diagnosis (FD) --- stator inter-turn short circuit --- conducted electromagnetic interference --- aggregated electromagnetic interference --- power electronic interfaces --- frequency beat --- modular --- voltage source inverter (VSI) --- multipulse --- 12-pulse --- pulse amplitude modulation (PAM) --- pulse width modulation (PWM) --- three-level --- coupled reactors --- wireless power transfer --- inductive power transmission --- AC-DC power converters --- T-type inverter --- GaN-transistors --- electromagnetic coupling --- EV battery --- electric vehicles --- fast battery charging --- local transport --- DC micro grid --- drive voltage frequency converter --- big power DC/DC converter --- interior permanent magnet motors --- maximum torque per ampere --- sensorless control --- adaptive control --- resonant inverter --- dielectric barrier discharge --- nonthermal plasma --- treatment of plastic surface --- decontamination of organic loose products --- silicon carbide --- dual active bridge dc-dc converter --- power electronic traction transformer --- 3 kV DC railway traction --- electric multiple unit --- DC-DC converter --- high-voltage-gain converter --- switched-capacitor converter --- inductiveless converter --- series active power filters --- multipulse converters --- power conditioning --- power quality --- power distribution --- reverse power flow --- compensation for nonactive current --- voltage regulation --- UPQC --- boost converters --- DC–DC power converters --- GaN switch --- resonant power conversion --- zero-current switching (ZCS) --- zero-voltage switching (ZVS) --- grasshopper optimization algorithm (GOA) --- particle swarm optimization (PSO) --- selective harmonics elimination PWM (SHEPWM) --- square-type matrix converters --- pulse width modulation --- multiphase systems --- matrix converter --- multipulse voltage converter --- nearest voltage modulation --- pulse width regulation --- low-switching modulation technique --- multipulse matrix converter with coupled reactors

Listing 1 - 10 of 14 << page
of 2
>>
Sort by