Listing 1 - 3 of 3 |
Sort by
|
Choose an application
This Special Issue of Nanomaterials collects a series of original research articles providing new insight into the application of computational quantum physics and chemistry in research on nanomaterials. It illustrates the extension and diversity of the field and indicates some future directions. It provides the reader with an overall view of the latest prospects in this fast evolving and cross-disciplinary field
Research & information: general --- BTF --- TATB --- CL-20 --- cocrystal --- energetic materials --- shock sensitivity --- large-scale ab initio molecular dynamics simulations --- AlN --- low-dimensional material --- atomic cluster --- electronic structure --- HSE06 hybrid functional --- CsPbBr3 --- CsPb2Br5 --- solvent polarity --- CTAB --- phase transition --- high-entropy alloys --- generalized stacking fault energy --- first-principles --- interfacial energy --- surface energy --- nanoparticles --- gold --- ab initio --- molecular mechanics --- fcc Ni --- tilt Σ5(210) grain boundary --- vacancy --- Si and Al impurity --- grain boundary energy --- segregation energy --- defects binding energies --- magnetism --- ferroelectricity --- SnTe --- nanoribbon --- nanoflakes --- critical size --- density-functional theory --- thermodynamics --- silver --- decahedron --- excess energy --- ab initio calculations --- dye-sensitized solar cells --- azobenzene --- density functional theory --- topological insulators --- magnetic doping --- defects --- environment and health --- first-principles physics --- DFT --- hazardous gas --- BTF --- TATB --- CL-20 --- cocrystal --- energetic materials --- shock sensitivity --- large-scale ab initio molecular dynamics simulations --- AlN --- low-dimensional material --- atomic cluster --- electronic structure --- HSE06 hybrid functional --- CsPbBr3 --- CsPb2Br5 --- solvent polarity --- CTAB --- phase transition --- high-entropy alloys --- generalized stacking fault energy --- first-principles --- interfacial energy --- surface energy --- nanoparticles --- gold --- ab initio --- molecular mechanics --- fcc Ni --- tilt Σ5(210) grain boundary --- vacancy --- Si and Al impurity --- grain boundary energy --- segregation energy --- defects binding energies --- magnetism --- ferroelectricity --- SnTe --- nanoribbon --- nanoflakes --- critical size --- density-functional theory --- thermodynamics --- silver --- decahedron --- excess energy --- ab initio calculations --- dye-sensitized solar cells --- azobenzene --- density functional theory --- topological insulators --- magnetic doping --- defects --- environment and health --- first-principles physics --- DFT --- hazardous gas
Choose an application
This Special Issue of Nanomaterials collects a series of original research articles providing new insight into the application of computational quantum physics and chemistry in research on nanomaterials. It illustrates the extension and diversity of the field and indicates some future directions. It provides the reader with an overall view of the latest prospects in this fast evolving and cross-disciplinary field
Research & information: general --- BTF --- TATB --- CL-20 --- cocrystal --- energetic materials --- shock sensitivity --- large-scale ab initio molecular dynamics simulations --- AlN --- low-dimensional material --- atomic cluster --- electronic structure --- HSE06 hybrid functional --- CsPbBr3 --- CsPb2Br5 --- solvent polarity --- CTAB --- phase transition --- high-entropy alloys --- generalized stacking fault energy --- first-principles --- interfacial energy --- surface energy --- nanoparticles --- gold --- ab initio --- molecular mechanics --- fcc Ni --- tilt Σ5(210) grain boundary --- vacancy --- Si and Al impurity --- grain boundary energy --- segregation energy --- defects binding energies --- magnetism --- ferroelectricity --- SnTe --- nanoribbon --- nanoflakes --- critical size --- density-functional theory --- thermodynamics --- silver --- decahedron --- excess energy --- ab initio calculations --- dye-sensitized solar cells --- azobenzene --- density functional theory --- topological insulators --- magnetic doping --- defects --- environment and health --- first-principles physics --- DFT --- hazardous gas --- n/a
Choose an application
This Special Issue of Nanomaterials collects a series of original research articles providing new insight into the application of computational quantum physics and chemistry in research on nanomaterials. It illustrates the extension and diversity of the field and indicates some future directions. It provides the reader with an overall view of the latest prospects in this fast evolving and cross-disciplinary field
BTF --- TATB --- CL-20 --- cocrystal --- energetic materials --- shock sensitivity --- large-scale ab initio molecular dynamics simulations --- AlN --- low-dimensional material --- atomic cluster --- electronic structure --- HSE06 hybrid functional --- CsPbBr3 --- CsPb2Br5 --- solvent polarity --- CTAB --- phase transition --- high-entropy alloys --- generalized stacking fault energy --- first-principles --- interfacial energy --- surface energy --- nanoparticles --- gold --- ab initio --- molecular mechanics --- fcc Ni --- tilt Σ5(210) grain boundary --- vacancy --- Si and Al impurity --- grain boundary energy --- segregation energy --- defects binding energies --- magnetism --- ferroelectricity --- SnTe --- nanoribbon --- nanoflakes --- critical size --- density-functional theory --- thermodynamics --- silver --- decahedron --- excess energy --- ab initio calculations --- dye-sensitized solar cells --- azobenzene --- density functional theory --- topological insulators --- magnetic doping --- defects --- environment and health --- first-principles physics --- DFT --- hazardous gas --- n/a
Listing 1 - 3 of 3 |
Sort by
|