Listing 1 - 10 of 13 | << page >> |
Sort by
|
Choose an application
series de fourier --- fonctions d'une variable reelle --- convergence
Choose an application
mathematics --- Calcul differentiel --- Calcul vectoriel --- Analyse vectorielle --- Series de fourier --- Theoreme de stokes --- Transformation de laplace --- Coordonees curviligenes --- Analyse mathématique --- Mathematical analysis --- Analyse mathématique
Choose an application
Càlcul --- Càlcul infinitesimal --- Límits (Matemàtica) --- Aritmètica --- Anàlisi harmònica --- Anàlisi p-àdica --- Càlcul diferencial --- Càlcul fraccional --- Càlcul mental --- Corbes --- Curvatura --- Equacions diferencials --- Sèries de Fourier --- Superfícies (Matemàtica) --- Teories no lineals --- Anàlisi matemàtica --- Concepte de nombre --- Funcions --- Geometria infinitesimal --- Mètode ABN --- Numeració
Choose an application
Càlcul --- Càlcul infinitesimal --- Límits (Matemàtica) --- Aritmètica --- Anàlisi harmònica --- Anàlisi p-àdica --- Càlcul diferencial --- Càlcul fraccional --- Càlcul mental --- Corbes --- Curvatura --- Equacions diferencials --- Sèries de Fourier --- Superfícies (Matemàtica) --- Teories no lineals --- Anàlisi matemàtica --- Concepte de nombre --- Funcions --- Geometria infinitesimal --- Mètode ABN --- Numeració --- Calculus. --- Analysis (Mathematics) --- Fluxions (Mathematics) --- Infinitesimal calculus --- Limits (Mathematics) --- Mathematical analysis --- Functions --- Geometry, Infinitesimal
Choose an application
Calculus. --- Càlcul --- Càlcul infinitesimal --- Límits (Matemàtica) --- Aritmètica --- Anàlisi harmònica --- Anàlisi p-àdica --- Càlcul diferencial --- Càlcul fraccional --- Càlcul mental --- Corbes --- Curvatura --- Equacions diferencials --- Sèries de Fourier --- Superfícies (Matemàtica) --- Teories no lineals --- Anàlisi matemàtica --- Concepte de nombre --- Funcions --- Geometria infinitesimal --- Mètode ABN --- Numeració --- Analysis (Mathematics) --- Fluxions (Mathematics) --- Infinitesimal calculus --- Limits (Mathematics) --- Mathematical analysis --- Functions --- Geometry, Infinitesimal
Choose an application
Functional analysis --- Mathematical analysis --- Numerical methods of optimisation --- Operational research. Game theory --- Mathematics --- Applied physical engineering --- analyse (wiskunde) --- economie --- wiskunde --- kansrekening --- optimalisatie --- Calculus --- Càlcul --- Càlcul infinitesimal --- Límits (Matemàtica) --- Aritmètica --- Anàlisi harmònica --- Anàlisi p-àdica --- Càlcul diferencial --- Càlcul fraccional --- Càlcul mental --- Corbes --- Curvatura --- Equacions diferencials --- Sèries de Fourier --- Superfícies (Matemàtica) --- Teories no lineals --- Anàlisi matemàtica --- Concepte de nombre --- Funcions --- Geometria infinitesimal --- Mètode ABN --- Numeració
Choose an application
Fourier series. --- Hardy spaces. --- Martingales (Mathematics) --- Sèries de Fourier --- Espais de Hardy --- Martingales (Matemàtica) --- Stochastic processes --- Spaces, Hardy --- Functional analysis --- Functions of complex variables --- Fourier integrals --- Series, Fourier --- Series, Trigonometric --- Trigonometric series --- Calculus --- Fourier analysis --- Harmonic analysis --- Harmonic functions --- Processos estocàstics --- Hardy, Espacios de --- Anàlisi funcional --- Integrals de Fourier --- Sèries trigonomètriques --- Anàlisi de Fourier --- Càlcul --- Integrals de Dirichlet
Choose an application
This study guide is designed for students taking courses in precalculus. The textbook includes practice problems that will help students to review and sharpen their knowledge of the subject and enhance their performance in the classroom. Offering detailed solutions, multiple methods for solving problems, and clear explanations of concepts, this hands-on guide will improve student’s problem-solving skills and basic understanding of the topics covered in their pre-calculus and calculus courses. Exercises cover a wide selection of basic and advanced questions and problems; Categorizes and orders the problems based on difficulty level, hence suitable for both knowledgeable and under-prepared students; Provides detailed and instructor-recommended solutions and methods, along with clear explanations; Can be used along core precalculus textbooks.
Engineering mathematics. --- Calculus. --- Engineering Mathematics. --- Analysis (Mathematics) --- Fluxions (Mathematics) --- Infinitesimal calculus --- Limits (Mathematics) --- Mathematical analysis --- Functions --- Geometry, Infinitesimal --- Engineering --- Engineering analysis --- Mathematics --- Precalculus. --- Study and teaching --- Càlcul --- Càlcul infinitesimal --- Límits (Matemàtica) --- Aritmètica --- Anàlisi harmònica --- Anàlisi p-àdica --- Càlcul diferencial --- Càlcul fraccional --- Càlcul mental --- Corbes --- Curvatura --- Equacions diferencials --- Sèries de Fourier --- Superfícies (Matemàtica) --- Teories no lineals --- Anàlisi matemàtica --- Concepte de nombre --- Funcions --- Geometria infinitesimal --- Mètode ABN --- Numeració
Choose an application
This monograph presents the summability of higher dimensional Fourier series, and generalizes the concept of Lebesgue points. Focusing on Fejér and Cesàro summability, as well as theta-summation, readers will become more familiar with a wide variety of summability methods. Within the theory of higher dimensional summability of Fourier series, the book also provides a much-needed simple proof of Lebesgue’s theorem, filling a gap in the literature. Recent results and real-world applications are highlighted as well, making this a timely resource. The book is structured into four chapters, prioritizing clarity throughout. Chapter One covers basic results from the one-dimensional Fourier series, and offers a clear proof of the Lebesgue theorem. In Chapter Two, convergence and boundedness results for the lq-summability are presented. The restricted and unrestricted rectangular summability are provided in Chapter Three, as well as the sufficient and necessary condition for the norm convergence of the rectangular theta-means. Chapter Four then introduces six types of Lebesgue points for higher dimensional functions. Lebesgue Points and Summability of Higher Dimensional Fourier Series will appeal to researchers working in mathematical analysis, particularly those interested in Fourier and harmonic analysis. Researchers in applied fields will also find this useful.
Fourier analysis. --- Sequences (Mathematics). --- Measure theory. --- Fourier Analysis. --- Sequences, Series, Summability. --- Measure and Integration. --- Lebesgue measure --- Measurable sets --- Measure of a set --- Algebraic topology --- Integrals, Generalized --- Measure algebras --- Rings (Algebra) --- Mathematical sequences --- Numerical sequences --- Algebra --- Mathematics --- Analysis, Fourier --- Mathematical analysis --- Summability theory. --- Sequences (Mathematics) --- Series --- Sèries de Fourier --- Sumabilitat --- Teoria de sumabilitat --- Sèries (Matemàtica) --- Successions (Matemàtica) --- Integrals de Fourier --- Sèries trigonomètriques --- Anàlisi de Fourier --- Càlcul --- Integrals de Dirichlet
Choose an application
The real-variable theory of function spaces has always been at the core of harmonic analysis. In particular, the real-variable theory of the Hardy space is a fundamental tool of harmonic analysis, with applications and connections to complex analysis, partial differential equations, and functional analysis. This book is devoted to exploring properties of generalized Herz spaces and establishing a complete real-variable theory of Hardy spaces associated with local and global generalized Herz spaces via a totally fresh perspective. This means that the authors view these generalized Herz spaces as special cases of ball quasi-Banach function spaces. In this book, the authors first give some basic properties of generalized Herz spaces and obtain the boundedness and the compactness characterizations of commutators on them. Then the authors introduce the associated Herz–Hardy spaces, localized Herz–Hardy spaces, and weak Herz–Hardy spaces, and develop a complete real-variable theory of these Herz–Hardy spaces, including their various maximal function, atomic, molecular as well as various Littlewood–Paley function characterizations. As applications, the authors establish the boundedness of some important operators arising from harmonic analysis on these Herz–Hardy spaces. Finally, the inhomogeneous Herz–Hardy spaces and their complete real-variable theory are also investigated. With the fresh perspective and the improved conclusions on the real-variable theory of Hardy spaces associated with ball quasi-Banach function spaces, all the obtained results of this book are new and their related exponents are sharp. This book will be appealing to researchers and graduate students who are interested in function spaces and their applications.
Functions of complex variables. --- Fourier analysis. --- Functional analysis. --- Several Complex Variables and Analytic Spaces. --- Fourier Analysis. --- Functional Analysis. --- Espais de Hardy --- Anàlisi de Fourier --- Functional calculus --- Calculus of variations --- Functional equations --- Integral equations --- Analysis, Fourier --- Mathematical analysis --- Complex variables --- Elliptic functions --- Functions of real variables --- Anàlisi matemàtica --- Polinomis ortogonals --- Sèries de Fourier --- Sèries ortogonals --- Transformacions de Fourier --- Anàlisi harmònica --- Ondetes (Matemàtica) --- Hardy, Espacios de --- Anàlisi funcional
Listing 1 - 10 of 13 | << page >> |
Sort by
|