Narrow your search
Listing 1 - 10 of 20 << page
of 2
>>
Sort by
Monk's music : Thelonious Monk and jazz history in the making
Author:
ISBN: 1435611381 1282360345 9786612360343 0520940962 9780520940963 9781435611382 0520252004 0520252012 9780520252004 9780520252011 Year: 2008 Publisher: Berkeley : University of California Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thelonious Monk (1917-1982) was one of jazz's greatest and most enigmatic figures. As a composer, pianist, and bandleader, Monk both extended the piano tradition known as Harlem stride and was at the center of modern jazz's creation during the 1940s, setting the stage for the experimentalism of the 1960s and '70s. This pathbreaking study combines cultural theory, biography, and musical analysis to shed new light on Monk's music and on the jazz canon itself. Gabriel Solis shows how the work of this stubbornly nonconformist composer emerged from the jazz world's fringes to find a central place in its canon. Solis reaches well beyond the usual life-and-times biography to address larger issues in jazz scholarship-ethnography and the role of memory in history's construction. He considers how Monk's stature has grown, from the narrowly focused wing of the avant-garde in the 1960s and '70s to the present, where he is claimed as an influence by musicians of all kinds. He looks at the ways musical lineages are created in the jazz world and, in the process, addresses the question of how musicians use performance itself to maintain, interpret, and debate the history of the musical tradition we call jazz.


Book
Wearable Movement Sensors for Rehabilitation: From Technology to Clinical Practice
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue shows a range of potential opportunities for the application of wearable movement sensors in motor rehabilitation. However, the papers surely do not cover the whole field of physical behavior monitoring in motor rehabilitation. Most studies in this Special Issue focused on the technical validation of wearable sensors and the development of algorithms. Clinical validation studies, studies applying wearable sensors for the monitoring of physical behavior in daily life conditions, and papers about the implementation of wearable sensors in motor rehabilitation are under-represented in this Special Issue. Studies investigating the usability and feasibility of wearable movement sensors in clinical populations were lacking. We encourage researchers to investigate the usability, acceptance, feasibility, reliability, and clinical validity of wearable sensors in clinical populations to facilitate the application of wearable movement sensors in motor rehabilitation.

Keywords

Technology: general issues --- accelerometers --- wearable sensors --- exercise --- measurement --- GMFCS level --- relative orientation estimation --- IMU --- magnetometer-free --- gait analysis --- machine learning --- inertial measurement units --- neurological disorders --- falls --- validity --- 3-D motion analysis --- single leg squat --- motion capture --- clinical --- rehabilitation --- motor function --- outcomes --- implementation --- locomotion --- assistive devices --- embedded sensors --- accelerometry --- physical activity --- Fourier transform --- functional linear model --- walking distance --- lower limb amputation --- gait --- Lie group --- constrained extended Kalman filter --- pose estimation --- wearable devices --- distance measurement --- gait planning --- stride length --- center of pressure --- human–machine interaction --- perinatal stroke --- kinematics --- upper extremity --- cerebral palsy --- hemiplegia --- constraint --- inertial measurement unit --- wireless sensors network --- motion tracking --- range of motion --- shoulder --- goniometer --- spinal cord injury --- tetraplegia --- clinical setting --- circadian motor behavior --- body-worn sensors --- older adults --- physically active workers --- low back pain --- inertial motion units --- wearable sensor --- real-time gait detection --- insole pressure sensors --- pathological gait --- gait rehabilitation --- assistive device --- wearable technology --- stroke --- physical therapy --- arm use --- upper limb performance --- accelerometer --- sensor --- walking --- n/a --- human-machine interaction


Book
Wearable Movement Sensors for Rehabilitation: From Technology to Clinical Practice
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue shows a range of potential opportunities for the application of wearable movement sensors in motor rehabilitation. However, the papers surely do not cover the whole field of physical behavior monitoring in motor rehabilitation. Most studies in this Special Issue focused on the technical validation of wearable sensors and the development of algorithms. Clinical validation studies, studies applying wearable sensors for the monitoring of physical behavior in daily life conditions, and papers about the implementation of wearable sensors in motor rehabilitation are under-represented in this Special Issue. Studies investigating the usability and feasibility of wearable movement sensors in clinical populations were lacking. We encourage researchers to investigate the usability, acceptance, feasibility, reliability, and clinical validity of wearable sensors in clinical populations to facilitate the application of wearable movement sensors in motor rehabilitation.

Keywords

accelerometers --- wearable sensors --- exercise --- measurement --- GMFCS level --- relative orientation estimation --- IMU --- magnetometer-free --- gait analysis --- machine learning --- inertial measurement units --- neurological disorders --- falls --- validity --- 3-D motion analysis --- single leg squat --- motion capture --- clinical --- rehabilitation --- motor function --- outcomes --- implementation --- locomotion --- assistive devices --- embedded sensors --- accelerometry --- physical activity --- Fourier transform --- functional linear model --- walking distance --- lower limb amputation --- gait --- Lie group --- constrained extended Kalman filter --- pose estimation --- wearable devices --- distance measurement --- gait planning --- stride length --- center of pressure --- human–machine interaction --- perinatal stroke --- kinematics --- upper extremity --- cerebral palsy --- hemiplegia --- constraint --- inertial measurement unit --- wireless sensors network --- motion tracking --- range of motion --- shoulder --- goniometer --- spinal cord injury --- tetraplegia --- clinical setting --- circadian motor behavior --- body-worn sensors --- older adults --- physically active workers --- low back pain --- inertial motion units --- wearable sensor --- real-time gait detection --- insole pressure sensors --- pathological gait --- gait rehabilitation --- assistive device --- wearable technology --- stroke --- physical therapy --- arm use --- upper limb performance --- accelerometer --- sensor --- walking --- n/a --- human-machine interaction


Book
Wearable Movement Sensors for Rehabilitation: From Technology to Clinical Practice
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This Special Issue shows a range of potential opportunities for the application of wearable movement sensors in motor rehabilitation. However, the papers surely do not cover the whole field of physical behavior monitoring in motor rehabilitation. Most studies in this Special Issue focused on the technical validation of wearable sensors and the development of algorithms. Clinical validation studies, studies applying wearable sensors for the monitoring of physical behavior in daily life conditions, and papers about the implementation of wearable sensors in motor rehabilitation are under-represented in this Special Issue. Studies investigating the usability and feasibility of wearable movement sensors in clinical populations were lacking. We encourage researchers to investigate the usability, acceptance, feasibility, reliability, and clinical validity of wearable sensors in clinical populations to facilitate the application of wearable movement sensors in motor rehabilitation.

Keywords

Technology: general issues --- accelerometers --- wearable sensors --- exercise --- measurement --- GMFCS level --- relative orientation estimation --- IMU --- magnetometer-free --- gait analysis --- machine learning --- inertial measurement units --- neurological disorders --- falls --- validity --- 3-D motion analysis --- single leg squat --- motion capture --- clinical --- rehabilitation --- motor function --- outcomes --- implementation --- locomotion --- assistive devices --- embedded sensors --- accelerometry --- physical activity --- Fourier transform --- functional linear model --- walking distance --- lower limb amputation --- gait --- Lie group --- constrained extended Kalman filter --- pose estimation --- wearable devices --- distance measurement --- gait planning --- stride length --- center of pressure --- human-machine interaction --- perinatal stroke --- kinematics --- upper extremity --- cerebral palsy --- hemiplegia --- constraint --- inertial measurement unit --- wireless sensors network --- motion tracking --- range of motion --- shoulder --- goniometer --- spinal cord injury --- tetraplegia --- clinical setting --- circadian motor behavior --- body-worn sensors --- older adults --- physically active workers --- low back pain --- inertial motion units --- wearable sensor --- real-time gait detection --- insole pressure sensors --- pathological gait --- gait rehabilitation --- assistive device --- wearable technology --- stroke --- physical therapy --- arm use --- upper limb performance --- accelerometer --- sensor --- walking --- accelerometers --- wearable sensors --- exercise --- measurement --- GMFCS level --- relative orientation estimation --- IMU --- magnetometer-free --- gait analysis --- machine learning --- inertial measurement units --- neurological disorders --- falls --- validity --- 3-D motion analysis --- single leg squat --- motion capture --- clinical --- rehabilitation --- motor function --- outcomes --- implementation --- locomotion --- assistive devices --- embedded sensors --- accelerometry --- physical activity --- Fourier transform --- functional linear model --- walking distance --- lower limb amputation --- gait --- Lie group --- constrained extended Kalman filter --- pose estimation --- wearable devices --- distance measurement --- gait planning --- stride length --- center of pressure --- human-machine interaction --- perinatal stroke --- kinematics --- upper extremity --- cerebral palsy --- hemiplegia --- constraint --- inertial measurement unit --- wireless sensors network --- motion tracking --- range of motion --- shoulder --- goniometer --- spinal cord injury --- tetraplegia --- clinical setting --- circadian motor behavior --- body-worn sensors --- older adults --- physically active workers --- low back pain --- inertial motion units --- wearable sensor --- real-time gait detection --- insole pressure sensors --- pathological gait --- gait rehabilitation --- assistive device --- wearable technology --- stroke --- physical therapy --- arm use --- upper limb performance --- accelerometer --- sensor --- walking


Book
Cyber Security of Critical Infrastructures
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Critical infrastructures are vital assets for public safety, economic welfare, and the national security of countries. The vulnerabilities of critical infrastructures have increased with the widespread use of information technologies. As Critical National Infrastructures are becoming more vulnerable to cyber-attacks, their protection becomes a significant issue for organizations as well as nations. The risks to continued operations, from failing to upgrade aging infrastructure or not meeting mandated regulatory regimes, are considered highly significant, given the demonstrable impact of such circumstances. Due to the rapid increase of sophisticated cyber threats targeting critical infrastructures with significant destructive effects, the cybersecurity of critical infrastructures has become an agenda item for academics, practitioners, and policy makers. A holistic view which covers technical, policy, human, and behavioural aspects is essential to handle cyber security of critical infrastructures effectively. Moreover, the ability to attribute crimes to criminals is a vital element of avoiding impunity in cyberspace. In this book, both research and practical aspects of cyber security considerations in critical infrastructures are presented. Aligned with the interdisciplinary nature of cyber security, authors from academia, government, and industry have contributed 13 chapters. The issues that are discussed and analysed include cybersecurity training, maturity assessment frameworks, malware analysis techniques, ransomware attacks, security solutions for industrial control systems, and privacy preservation methods.

Keywords

Technology: general issues --- crypto-ransomware --- locker-ransomware --- static analysis --- dynamic analysis --- machine learning --- assessment framework --- cybersecurity --- GDPR --- PCI-DSS --- DSPT --- NISD --- cyber-ranges --- security training --- security modelling --- serious games --- dynamic adaptation --- training programmes --- computers in education --- bloom --- STRIDE --- smart shipping --- military --- VMF --- hash chain --- T-OTP --- lightweight secure hash (LSH) --- CNR --- web application --- security vulnerability --- analysis security testing --- static analysis security testing --- dynamic analysis security testing --- interactive analysis security testing --- assessment methodology --- false positive --- false negative --- tools combination --- deep learning --- image classification --- transfer learning --- industrial control system --- fine-tuning --- testbeds --- cyber ranges --- cyber exercises --- education --- training --- research --- lattice cryptography --- code cryptography --- post quantum cryptography --- physical unclonable function --- public key infrastructure --- high performance computing --- malware analysis --- static malware analysis --- dynamic malware analysis --- malware classification --- random forest --- support vector machines --- smart grid --- risk assessment --- threat modeling --- formal verification --- probabilistic model checking --- cloud robotics --- image face recognition --- deep learning algorithms --- security --- encryption algorithms --- cybercrime --- Hasse diagram --- interval-valued complex intuitionistic fuzzy relations --- interval-valued complex intuitionistic fuzzy sets --- offensive cybersecurity --- cyber-attacks --- scoring model --- offensive cybersecurity framework --- crypto-ransomware --- locker-ransomware --- static analysis --- dynamic analysis --- machine learning --- assessment framework --- cybersecurity --- GDPR --- PCI-DSS --- DSPT --- NISD --- cyber-ranges --- security training --- security modelling --- serious games --- dynamic adaptation --- training programmes --- computers in education --- bloom --- STRIDE --- smart shipping --- military --- VMF --- hash chain --- T-OTP --- lightweight secure hash (LSH) --- CNR --- web application --- security vulnerability --- analysis security testing --- static analysis security testing --- dynamic analysis security testing --- interactive analysis security testing --- assessment methodology --- false positive --- false negative --- tools combination --- deep learning --- image classification --- transfer learning --- industrial control system --- fine-tuning --- testbeds --- cyber ranges --- cyber exercises --- education --- training --- research --- lattice cryptography --- code cryptography --- post quantum cryptography --- physical unclonable function --- public key infrastructure --- high performance computing --- malware analysis --- static malware analysis --- dynamic malware analysis --- malware classification --- random forest --- support vector machines --- smart grid --- risk assessment --- threat modeling --- formal verification --- probabilistic model checking --- cloud robotics --- image face recognition --- deep learning algorithms --- security --- encryption algorithms --- cybercrime --- Hasse diagram --- interval-valued complex intuitionistic fuzzy relations --- interval-valued complex intuitionistic fuzzy sets --- offensive cybersecurity --- cyber-attacks --- scoring model --- offensive cybersecurity framework


Book
Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aging population and the increased prevalence of neurological diseases have raised the issue of gait and balance disorders as a major public concern worldwide. Indeed, gait and balance disorders are responsible for a high healthcare and economic burden on society, thus, requiring new solutions to prevent harmful consequences. Recently, wearable sensors have provided new challenges and opportunities to address this issue through innovative diagnostic and therapeutic strategies. Accordingly, the book “Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders” collects the most up-to-date information about the objective evaluation of gait and balance disorders, by means of wearable biosensors, in patients with various types of neurological diseases, including Parkinson’s disease, multiple sclerosis, stroke, traumatic brain injury, and cerebellar ataxia. By adopting wearable technologies, the sixteen original research articles and reviews included in this book offer an updated overview of the most recent approaches for the objective evaluation of gait and balance disorders.

Keywords

History of engineering & technology --- inertial measurement units --- gait analysis --- biomedical signal processing --- pattern recognition --- step detection --- physiological signals --- Parkinson’s disease --- pathological gait --- turning analysis --- wearable sensors --- mobile gait analysis --- wearables --- inertial sensors --- traumatic brain injury --- dynamic balance --- gait disorders --- gait patterns --- head injury --- gait symmetry --- gait smoothness --- acceleration --- machine learning --- classification --- accelerometer --- GAITRite --- multi-regression normalization --- SVM --- random forest classifier --- balance --- gait --- transcranial direct current stimulation --- wearable electronics --- IMUs --- cueing --- posture --- rehabilitation --- cerebellar ataxia --- movement analysis --- personalized medicine --- stroke --- asymmetry --- trunk --- reliability --- validity --- aging --- reactive postural responses --- yaw perturbation --- kinematics --- postural stability --- dynamic posturography --- multiple sclerosis --- gait metrics --- test-retest reliability --- sampling frequency --- accelerometry --- autocorrelation --- harmonic ratio --- six-minute walk --- back school --- inertial sensor --- lower back pain --- stability --- timed up and go test --- gait assessment --- tri-axial accelerometer --- CV --- healthy subjects --- test-retest --- trajectory reconstruction --- stride segmentation --- dynamic time warping --- pedestrian dead-reckoning --- near falls --- loss of balance --- pre-impact fall detection --- activities of daily life --- bio-signals --- EEG --- EMG --- wireless sensors --- posturography --- Alzheimer’s disease --- vestibular syndrome --- diagnosis --- symptoms monitoring --- wearable --- home-monitoring --- inertial measurement units --- gait analysis --- biomedical signal processing --- pattern recognition --- step detection --- physiological signals --- Parkinson’s disease --- pathological gait --- turning analysis --- wearable sensors --- mobile gait analysis --- wearables --- inertial sensors --- traumatic brain injury --- dynamic balance --- gait disorders --- gait patterns --- head injury --- gait symmetry --- gait smoothness --- acceleration --- machine learning --- classification --- accelerometer --- GAITRite --- multi-regression normalization --- SVM --- random forest classifier --- balance --- gait --- transcranial direct current stimulation --- wearable electronics --- IMUs --- cueing --- posture --- rehabilitation --- cerebellar ataxia --- movement analysis --- personalized medicine --- stroke --- asymmetry --- trunk --- reliability --- validity --- aging --- reactive postural responses --- yaw perturbation --- kinematics --- postural stability --- dynamic posturography --- multiple sclerosis --- gait metrics --- test-retest reliability --- sampling frequency --- accelerometry --- autocorrelation --- harmonic ratio --- six-minute walk --- back school --- inertial sensor --- lower back pain --- stability --- timed up and go test --- gait assessment --- tri-axial accelerometer --- CV --- healthy subjects --- test-retest --- trajectory reconstruction --- stride segmentation --- dynamic time warping --- pedestrian dead-reckoning --- near falls --- loss of balance --- pre-impact fall detection --- activities of daily life --- bio-signals --- EEG --- EMG --- wireless sensors --- posturography --- Alzheimer’s disease --- vestibular syndrome --- diagnosis --- symptoms monitoring --- wearable --- home-monitoring


Book
MEMS Accelerometers
Authors: --- ---
ISBN: 3038974153 3038974145 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Micro-electro-mechanical system (MEMS) devices are widely used for inertia, pressure, and ultrasound sensing applications. Research on integrated MEMS technology has undergone extensive development driven by the requirements of a compact footprint, low cost, and increased functionality. Accelerometers are among the most widely used sensors implemented in MEMS technology. MEMS accelerometers are showing a growing presence in almost all industries ranging from automotive to medical. A traditional MEMS accelerometer employs a proof mass suspended to springs, which displaces in response to an external acceleration. A single proof mass can be used for one- or multi-axis sensing. A variety of transduction mechanisms have been used to detect the displacement. They include capacitive, piezoelectric, thermal, tunneling, and optical mechanisms. Capacitive accelerometers are widely used due to their DC measurement interface, thermal stability, reliability, and low cost. However, they are sensitive to electromagnetic field interferences and have poor performance for high-end applications (e.g., precise attitude control for the satellite). Over the past three decades, steady progress has been made in the area of optical accelerometers for high-performance and high-sensitivity applications but several challenges are still to be tackled by researchers and engineers to fully realize opto-mechanical accelerometers, such as chip-scale integration, scaling, low bandwidth, etc.

Keywords

micromachining --- n/a --- turbulent kinetic energy dissipation rate --- microelectromechanical systems (MEMS) piezoresistive sensor chip --- WiFi-RSSI radio map --- step detection --- built-in self-test --- regularity of activity --- motion analysis --- gait analysis --- frequency --- acceleration --- MEMS accelerometer --- zero-velocity update --- rehabilitation assessment --- vacuum microelectronic --- dance classification --- Kerr noise --- MEMS --- micro machining --- MEMS sensors --- stereo visual-inertial odometry --- self-coaching --- miniaturization --- wavelet packet --- three-axis acceleration sensor --- MEMS-IMU accelerometer --- performance characterization --- electrostatic stiffness --- delaying mechanism --- three-axis accelerometer --- angular-rate sensing --- indoor positioning --- whispering-gallery-mode --- sensitivity --- heat convection --- multi-axis sensing --- L-shaped beam --- stride length estimation --- activity monitoring --- process optimization --- mismatch of parasitic capacitance --- electromechanical delta-sigma --- cathode tips array --- in situ self-testing --- high acceleration sensor --- deep learning --- marine environmental monitoring --- accelerometer --- fault tolerant --- hostile environment --- micro-electro-mechanical systems (MEMS) --- low-temperature co-fired ceramic (LTCC) --- classification of horse gaits --- Taguchi method --- interface ASIC --- capacitive transduction --- digital resonator --- safety and arming system --- inertial sensors --- MEMS technology --- sleep time duration detection --- field emission --- probe --- piezoresistive effect --- capacitive accelerometer --- auto-encoder --- MEMS-IMU --- body sensor network --- optical microresonator --- wireless --- hybrid integrated --- mode splitting


Book
Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aging population and the increased prevalence of neurological diseases have raised the issue of gait and balance disorders as a major public concern worldwide. Indeed, gait and balance disorders are responsible for a high healthcare and economic burden on society, thus, requiring new solutions to prevent harmful consequences. Recently, wearable sensors have provided new challenges and opportunities to address this issue through innovative diagnostic and therapeutic strategies. Accordingly, the book “Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders” collects the most up-to-date information about the objective evaluation of gait and balance disorders, by means of wearable biosensors, in patients with various types of neurological diseases, including Parkinson’s disease, multiple sclerosis, stroke, traumatic brain injury, and cerebellar ataxia. By adopting wearable technologies, the sixteen original research articles and reviews included in this book offer an updated overview of the most recent approaches for the objective evaluation of gait and balance disorders.

Keywords

History of engineering & technology --- inertial measurement units --- gait analysis --- biomedical signal processing --- pattern recognition --- step detection --- physiological signals --- Parkinson’s disease --- pathological gait --- turning analysis --- wearable sensors --- mobile gait analysis --- wearables --- inertial sensors --- traumatic brain injury --- dynamic balance --- gait disorders --- gait patterns --- head injury --- gait symmetry --- gait smoothness --- acceleration --- machine learning --- classification --- accelerometer --- GAITRite --- multi-regression normalization --- SVM --- random forest classifier --- balance --- gait --- transcranial direct current stimulation --- wearable electronics --- IMUs --- cueing --- posture --- rehabilitation --- cerebellar ataxia --- movement analysis --- personalized medicine --- stroke --- asymmetry --- trunk --- reliability --- validity --- aging --- reactive postural responses --- yaw perturbation --- kinematics --- postural stability --- dynamic posturography --- multiple sclerosis --- gait metrics --- test-retest reliability --- sampling frequency --- accelerometry --- autocorrelation --- harmonic ratio --- six-minute walk --- back school --- inertial sensor --- lower back pain --- stability --- timed up and go test --- gait assessment --- tri-axial accelerometer --- CV --- healthy subjects --- test-retest --- trajectory reconstruction --- stride segmentation --- dynamic time warping --- pedestrian dead-reckoning --- near falls --- loss of balance --- pre-impact fall detection --- activities of daily life --- bio-signals --- EEG --- EMG --- wireless sensors --- posturography --- Alzheimer’s disease --- vestibular syndrome --- diagnosis --- symptoms monitoring --- wearable --- home-monitoring


Book
Cyber Security of Critical Infrastructures
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Critical infrastructures are vital assets for public safety, economic welfare, and the national security of countries. The vulnerabilities of critical infrastructures have increased with the widespread use of information technologies. As Critical National Infrastructures are becoming more vulnerable to cyber-attacks, their protection becomes a significant issue for organizations as well as nations. The risks to continued operations, from failing to upgrade aging infrastructure or not meeting mandated regulatory regimes, are considered highly significant, given the demonstrable impact of such circumstances. Due to the rapid increase of sophisticated cyber threats targeting critical infrastructures with significant destructive effects, the cybersecurity of critical infrastructures has become an agenda item for academics, practitioners, and policy makers. A holistic view which covers technical, policy, human, and behavioural aspects is essential to handle cyber security of critical infrastructures effectively. Moreover, the ability to attribute crimes to criminals is a vital element of avoiding impunity in cyberspace. In this book, both research and practical aspects of cyber security considerations in critical infrastructures are presented. Aligned with the interdisciplinary nature of cyber security, authors from academia, government, and industry have contributed 13 chapters. The issues that are discussed and analysed include cybersecurity training, maturity assessment frameworks, malware analysis techniques, ransomware attacks, security solutions for industrial control systems, and privacy preservation methods.

Keywords

Technology: general issues --- crypto-ransomware --- locker-ransomware --- static analysis --- dynamic analysis --- machine learning --- assessment framework --- cybersecurity --- GDPR --- PCI-DSS --- DSPT --- NISD --- cyber-ranges --- security training --- security modelling --- serious games --- dynamic adaptation --- training programmes --- computers in education --- bloom --- STRIDE --- smart shipping --- military --- VMF --- hash chain --- T-OTP --- lightweight secure hash (LSH) --- CNR --- web application --- security vulnerability --- analysis security testing --- static analysis security testing --- dynamic analysis security testing --- interactive analysis security testing --- assessment methodology --- false positive --- false negative --- tools combination --- deep learning --- image classification --- transfer learning --- industrial control system --- fine-tuning --- testbeds --- cyber ranges --- cyber exercises --- education --- training --- research --- lattice cryptography --- code cryptography --- post quantum cryptography --- physical unclonable function --- public key infrastructure --- high performance computing --- malware analysis --- static malware analysis --- dynamic malware analysis --- malware classification --- random forest --- support vector machines --- smart grid --- risk assessment --- threat modeling --- formal verification --- probabilistic model checking --- cloud robotics --- image face recognition --- deep learning algorithms --- security --- encryption algorithms --- cybercrime --- Hasse diagram --- interval-valued complex intuitionistic fuzzy relations --- interval-valued complex intuitionistic fuzzy sets --- offensive cybersecurity --- cyber-attacks --- scoring model --- offensive cybersecurity framework --- n/a


Book
Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aging population and the increased prevalence of neurological diseases have raised the issue of gait and balance disorders as a major public concern worldwide. Indeed, gait and balance disorders are responsible for a high healthcare and economic burden on society, thus, requiring new solutions to prevent harmful consequences. Recently, wearable sensors have provided new challenges and opportunities to address this issue through innovative diagnostic and therapeutic strategies. Accordingly, the book “Wearable Sensors in the Evaluation of Gait and Balance in Neurological Disorders” collects the most up-to-date information about the objective evaluation of gait and balance disorders, by means of wearable biosensors, in patients with various types of neurological diseases, including Parkinson’s disease, multiple sclerosis, stroke, traumatic brain injury, and cerebellar ataxia. By adopting wearable technologies, the sixteen original research articles and reviews included in this book offer an updated overview of the most recent approaches for the objective evaluation of gait and balance disorders.

Keywords

inertial measurement units --- gait analysis --- biomedical signal processing --- pattern recognition --- step detection --- physiological signals --- Parkinson’s disease --- pathological gait --- turning analysis --- wearable sensors --- mobile gait analysis --- wearables --- inertial sensors --- traumatic brain injury --- dynamic balance --- gait disorders --- gait patterns --- head injury --- gait symmetry --- gait smoothness --- acceleration --- machine learning --- classification --- accelerometer --- GAITRite --- multi-regression normalization --- SVM --- random forest classifier --- balance --- gait --- transcranial direct current stimulation --- wearable electronics --- IMUs --- cueing --- posture --- rehabilitation --- cerebellar ataxia --- movement analysis --- personalized medicine --- stroke --- asymmetry --- trunk --- reliability --- validity --- aging --- reactive postural responses --- yaw perturbation --- kinematics --- postural stability --- dynamic posturography --- multiple sclerosis --- gait metrics --- test-retest reliability --- sampling frequency --- accelerometry --- autocorrelation --- harmonic ratio --- six-minute walk --- back school --- inertial sensor --- lower back pain --- stability --- timed up and go test --- gait assessment --- tri-axial accelerometer --- CV --- healthy subjects --- test-retest --- trajectory reconstruction --- stride segmentation --- dynamic time warping --- pedestrian dead-reckoning --- near falls --- loss of balance --- pre-impact fall detection --- activities of daily life --- bio-signals --- EEG --- EMG --- wireless sensors --- posturography --- Alzheimer’s disease --- vestibular syndrome --- diagnosis --- symptoms monitoring --- wearable --- home-monitoring

Listing 1 - 10 of 20 << page
of 2
>>
Sort by