Narrow your search

Library

Odisee (49)

Thomas More Mechelen (49)

UCLL (49)

VIVES (49)

Thomas More Kempen (46)

KBC (43)

LUCA School of Arts (27)

ULB (24)

KU Leuven (23)

VUB (17)

More...

Resource type

book (68)

digital (10)


Language

English (67)

French (1)


Year
From To Submit

2024 (5)

2022 (3)

2021 (5)

2020 (7)

2019 (5)

More...
Listing 1 - 10 of 68 << page
of 7
>>
Sort by

Book
Advanced analytics with SPARK : patterns for learning from data at scale
Authors: --- --- ---
ISBN: 9781491912768 Year: 2015 Publisher: Beijing : O'Reilly,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Learning spark
Authors: --- --- ---
ISBN: 9781449358624 1449358624 Year: 2015 Publisher: Beijing O'Reilly

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. You'll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning.


Book
Spark : the definitive guide : big data processing made simple
Authors: ---
ISBN: 9781491912218 Year: 2018 Publisher: Beijing : O'Reilly,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Learning Spark SQL : architect streaming analytics and machine learning solutions
Author:
Year: 2017 Publisher: Birmingham, [England] ; Mumbai, [India] : Packt Publishing,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Design, implement, and deliver successful streaming applications, machine learning pipelines and graph applications using Spark SQL API About This Book Learn about the design and implementation of streaming applications, machine learning pipelines, deep learning, and large-scale graph processing applications using Spark SQL APIs and Scala. Learn data exploration, data munging, and how to process structured and semi-structured data using real-world datasets and gain hands-on exposure to the issues and challenges of working with noisy and "dirty" real-world data. Understand design considerations for scalability and performance in web-scale Spark application architectures. Who This Book Is For If you are a developer, engineer, or an architect and want to learn how to use Apache Spark in a web-scale project, then this is the book for you. It is assumed that you have prior knowledge of SQL querying. A basic programming knowledge with Scala, Java, R, or Python is all you need to get started with this book. What You Will Learn Familiarize yourself with Spark SQL programming, including working with DataFrame/Dataset API and SQL Perform a series of hands-on exercises with different types of data sources, including CSV, JSON, Avro, MySQL, and MongoDB Perform data quality checks, data visualization, and basic statistical analysis tasks Perform data munging tasks on publically available datasets Learn how to use Spark SQL and Apache Kafka to build streaming applications Learn key performance-tuning tips and tricks in Spark SQL applications Learn key architectural components and patterns in large-scale Spark SQL applications In Detail In the past year, Apache Spark has been increasingly adopted for the development of distributed applications. Spark SQL APIs provide an optimized interface that helps developers build such applications quickly and easily. However, designing web-scale production applications using Spark SQL APIs can be a complex task. Hence, understanding the design and implementation best practices before you start your project will help you avoid these problems. This book gives an insight into the engineering practices used to design and build real-world, Spark-based applications. The book's hands-on examples will give you the required confidence to work on any future projects you encounter in Spark SQL. It starts by familiarizing you with data exploration and data munging tasks using Spark SQL and Scala. Extensive code examples will help yo...


Book
Spark for data science : analyze your data and delve deep into the world of machine learning with the latest Spark version, 2.0
Authors: --- ---
Year: 2016 Publisher: Birmingham, England : Packt Publishing,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Analyze your data and delve deep into the world of machine learning with the latest Spark version, 2.0 About This Book Perform data analysis and build predictive models on huge datasets that leverage Apache Spark Learn to integrate data science algorithms and techniques with the fast and scalable computing features of Spark to address big data challenges Work through practical examples on real-world problems with sample code snippets Who This Book Is For This book is for anyone who wants to leverage Apache Spark for data science and machine learning. If you are a technologist who wants to expand your knowledge to perform data science operations in Spark, or a data scientist who wants to understand how algorithms are implemented in Spark, or a newbie with minimal development experience who wants to learn about Big Data Analytics, this book is for you! What You Will Learn Consolidate, clean, and transform your data acquired from various data sources Perform statistical analysis of data to find hidden insights Explore graphical techniques to see what your data looks like Use machine learning techniques to build predictive models Build scalable data products and solutions Start programming using the RDD, DataFrame and Dataset APIs Become an expert by improving your data analytical skills In Detail This is the era of Big Data. The words ?Big Data' implies big innovation and enables a competitive advantage for businesses. Apache Spark was designed to perform Big Data analytics at scale, and so Spark is equipped with the necessary algorithms and supports multiple programming languages. Whether you are a technologist, a data scientist, or a beginner to Big Data analytics, this book will provide you with all the skills necessary to perform statistical data analysis, data visualization, predictive modeling, and build scalable data products or solutions using Python, Scala, and R. With ample case studies and real-world examples, Spark for Data Science will help you ensure the successful execution of your data science projects. Style and approach This book takes a step-by-step approach to statistical analysis and machine learning, and is explained in a conversational and easy-to-follow style. Each topic is explained sequentially with a focus on the fundamentals as well as the advanced concepts of algorithms and techniques. Real-world examples with sample code snippets are also included.


Book
Machine learning with Apache Spark quick start guide : uncover patterns, derive actionable insights, and learn from big data using MLlib
Author:
ISBN: 1789346568 9781789346565 Year: 2018 Publisher: Birmingham : Packt,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Combine advanced analytics including Machine Learning, Deep Learning Neural Networks and Natural Language Processing with modern scalable technologies including Apache Spark to derive actionable insights from Big Data in real-time Key Features Make a hands-on start in the fields of Big Data, Distributed Technologies and Machine Learning Learn how to design, develop and interpret the results of common Machine Learning algorithms Uncover hidden patterns in your data in order to derive real actionable insights and business value Book Description Every person and every organization in the world manages data, whether they realize it or not. Data is used to describe the world around us and can be used for almost any purpose, from analyzing consumer habits to fighting disease and serious organized crime. Ultimately, we manage data in order to derive value from it, and many organizations around the world have traditionally invested in technology to help process their data faster and more efficiently. But we now live in an interconnected world driven by mass data creation and consumption where data is no longer rows and columns restricted to a spreadsheet, but an organic and evolving asset in its own right. With this realization comes major challenges for organizations: how do we manage the sheer size of data being created every second (think not only spreadsheets and databases, but also social media posts, images, videos, music, blogs and so on)? And once we can manage all of this data, how do we derive real value from it? The focus of Machine Learning with Apache Spark is to help us answer these questions in a hands-on manner. We introduce the latest scalable technologies to help us manage and process big data. We then introduce advanced analytical algorithms applied to real-world use cases in order to uncover patterns, derive actionable insights, and learn from this big data. What you will learn Understand how Spark fits in the context of the big data ecosystem Understand how to deploy and configure a local development environment using Apache Spark Understand how to design supervised and unsupervised learning models Build models to perform NLP, deep learning, and cognitive services using Spark ML libraries Design real-time machine learning pipelines in Apache Spark Become familiar with advanced techniques for processing a large volume of data by applying machine learning algorithms Who this book is for This book is aimed at Business Analysts, Data ...


Book
Practical data analysis : a practical guide to obtaining, transforming, exploring, and analyzing data using Python, MongoDB, and Apache Spark
Authors: ---
Year: 2016 Publisher: Birmingham, England : Packt Publishing,

Loading...
Export citation

Choose an application

Bookmark

Abstract

A practical guide to obtaining, transforming, exploring, and analyzing data using Python, MongoDB, and Apache Spark About This Book Learn to use various data analysis tools and algorithms to classify, cluster, visualize, simulate, and forecast your data Apply Machine Learning algorithms to different kinds of data such as social networks, time series, and images A hands-on guide to understanding the nature of data and how to turn it into insight Who This Book Is For This book is for developers who want to implement data analysis and data-driven algorithms in a practical way. It is also suitable for those without a background in data analysis or data processing. Basic knowledge of Python programming, statistics, and linear algebra is assumed. What You Will Learn Acquire, format, and visualize your data Build an image-similarity search engine Generate meaningful visualizations anyone can understand Get started with analyzing social network graphs Find out how to implement sentiment text analysis Install data analysis tools such as Pandas, MongoDB, and Apache Spark Get to grips with Apache Spark Implement machine learning algorithms such as classification or forecasting In Detail Beyond buzzwords like Big Data or Data Science, there are a great opportunities to innovate in many businesses using data analysis to get data-driven products. Data analysis involves asking many questions about data in order to discover insights and generate value for a product or a service. This book explains the basic data algorithms without the theoretical jargon, and you'll get hands-on turning data into insights using machine learning techniques. We will perform data-driven innovation processing for several types of data such as text, Images, social network graphs, documents, and time series, showing you how to implement large data processing with MongoDB and Apache Spark. Style and approach This is a hands-on guide to data analysis and data processing. The concrete examples are explained with simple code and accessible data.


Book
Essential PySpark for data analytics : a beginner's guide to harnessing the power and ease of PySpark 3.0
Author:
ISBN: 1800568878 9781800568877 Year: 2021 Publisher: Birmingham, England ; Mumbai : Packt,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Get started with distributed computing using PySpark, a single unified framework to solve end-to-end data analytics at scale Key Features Discover how to convert huge amounts of raw data into meaningful and actionable insights Use Spark's unified analytics engine for end-to-end analytics, from data preparation to predictive analytics Perform data ingestion, cleansing, and integration for ML, data analytics, and data visualization Book Description Apache Spark is a unified data analytics engine designed to process huge volumes of data quickly and efficiently. PySpark is Apache Spark's Python language API, which offers Python developers an easy-to-use scalable data analytics framework. Essential PySpark for Scalable Data Analytics starts by exploring the distributed computing paradigm and provides a high-level overview of Apache Spark. You'll begin your analytics journey with the data engineering process, learning how to perform data ingestion, cleansing, and integration at scale. This book helps you build real-time analytics pipelines that help you gain insights faster. You'll then discover methods for building cloud-based data lakes, and explore Delta Lake, which brings reliability to data lakes. The book also covers Data Lakehouse, an emerging paradigm, which combines the structure and performance of a data warehouse with the scalability of cloud-based data lakes. Later, you'll perform scalable data science and machine learning tasks using PySpark, such as data preparation, feature engineering, and model training and productionization. Finally, you'll learn ways to scale out standard Python ML libraries along with a new pandas API on top of PySpark called Koalas. By the end of this PySpark book, you'll be able to harness the power of PySpark to solve business problems. What you will learn Understand the role of distributed computing in the world of big data Gain an appreciation for Apache Spark as the de facto go-to for big data processing Scale out your data analytics process using Apache Spark Build data pipelines using data lakes, and perform data visualization with PySpark and Spark SQL Leverage the cloud to build truly scalable and real-time data analytics applications Explore the applications of data science and scalable machine learning with PySpark Integrate your clean and curated data with BI and SQL analysis tools Who this book is for This book is for practicing data engineers, data scientists, data analysts, and data enthusiasts wh ...


Book
Apache spark 2.x machine learning cookbook : over 100 recipes to simplify machine learning model implementations with Spark
Author:
Year: 2017 Publisher: Birmingham, England : Packt Publishing,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Simplify machine learning model implementations with Spark About This Book Solve the day-to-day problems of data science with Spark This unique cookbook consists of exciting and intuitive numerical recipes Optimize your work by acquiring, cleaning, analyzing, predicting, and visualizing your data Who This Book Is For This book is for Scala developers with a fairly good exposure to and understanding of machine learning techniques, but lack practical implementations with Spark. A solid knowledge of machine learning algorithms is assumed, as well as hands-on experience of implementing ML algorithms with Scala. However, you do not need to be acquainted with the Spark ML libraries and ecosystem. What You Will Learn Get to know how Scala and Spark go hand-in-hand for developers when developing ML systems with Spark Build a recommendation engine that scales with Spark Find out how to build unsupervised clustering systems to classify data in Spark Build machine learning systems with the Decision Tree and Ensemble models in Spark Deal with the curse of high-dimensionality in big data using Spark Implement Text analytics for Search Engines in Spark Streaming Machine Learning System implementation using Spark In Detail Machine learning aims to extract knowledge from data, relying on fundamental concepts in computer science, statistics, probability, and optimization. Learning about algorithms enables a wide range of applications, from everyday tasks such as product recommendations and spam filtering to cutting edge applications such as self-driving cars and personalized medicine. You will gain hands-on experience of applying these principles using Apache Spark, a resilient cluster computing system well suited for large-scale machine learning tasks. This book begins with a quick overview of setting up the necessary IDEs to facilitate the execution of code examples that will be covered in various chapters. It also highlights some key issues developers face while working with machine learning algorithms on the Spark platform. We progress by uncovering the various Spark APIs and the implementation of ML algorithms with developing classification systems, recommendation engines, text analytics, clustering, and learning systems. Toward the final chapters, we'll focus on building high-end applications and explain various unsupervised methodologies and challenges to tackle when implementing with big data ML systems. Style and approach This book is packed with intu...


Book
Hands-on deep learning with Apache Spark : build and deploy distributed deep learning applications on Apache Spark.
Author:
ISBN: 1788999703 9781788999700 Year: 2019 Publisher: Birmingham ; Mumbai : Packt,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Speed up the design and implementation of deep learning solutions using Apache SparkKey FeaturesExplore the world of distributed deep learning with Apache SparkTrain neural networks with deep learning libraries such as BigDL and TensorFlowDevelop Spark deep learning applications to intelligently handle large and complex datasetsBook DescriptionDeep learning is a subset of machine learning where datasets with several layers of complexity can be processed. Hands-On Deep Learning with Apache Spark addresses the sheer complexity of technical and analytical parts and the speed at which deep learning solutions can be implemented on Apache Spark. The book starts with the fundamentals of Apache Spark and deep learning. You will set up Spark for deep learning, learn principles of distributed modeling, and understand different types of neural nets. You will then implement deep learning models, such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) on Spark. As you progress through the book, you will gain hands-on experience of what it takes to understand the complex datasets you are dealing with. During the course of this book, you will use popular deep learning frameworks, such as TensorFlow, Deeplearning4j, and Keras to train your distributed models. By the end of this book, you'll have gained experience with the implementation of your models on a variety of use cases. What you will learnUnderstand the basics of deep learningSet up Apache Spark for deep learningUnderstand the principles of distribution modeling and different types of neural networksObtain an understanding of deep learning algorithmsDiscover textual analysis and deep learning with SparkUse popular deep learning frameworks, such as Deeplearning4j, TensorFlow, and KerasExplore popular deep learning algorithmsWho this book is forIf you are a Scala developer, data scientist, or data analyst who wants to learn how to use Spark for implementing efficient deep learning models, Hands-On Deep Learning with Apache Spark is for you. Knowledge of the core machine learning concepts and some exposure to Spark will be helpful.

Listing 1 - 10 of 68 << page
of 7
>>
Sort by