Listing 1 - 10 of 10 |
Sort by
|
Choose an application
Automobile industry workers --- Labor unions --- Simca (Firm).
Choose an application
Sciences appliquées --- Techniek --- Technique --- Toegepaste wetenschappen --- Automobiles Simca --- Simca-automobielen --- 629.11
Choose an application
Sciences appliquées --- Techniek --- Technique --- Toegepaste wetenschappen --- Automobiles Simca 1000 --- Simca 1000-automobiel --- 629.11
Choose an application
Sciences appliquées --- Technique --- Automobiles Simca Aronde --- Simca Aronde-automobiliel --- 629.113
Choose an application
Sciences appliquées --- Techniek --- Technique --- Toegepaste wetenschappen --- Automobiles Simca --- Simca-automobiel --- 629.113
Choose an application
Automobielon --- Automobiles --- Sciences appliquées --- Toegepaste wetenschappen --- Automobile Simca --- Simca-automobiel --- 629.113
Choose an application
There are several major megatrends having an impact on pyrometallurgical metal processing. The steadily growing demand for all metals is strengthened by the emergence of electrical vehicles (EV), which brings a high need for battery metals, but additionally, a significant increase in copper consumption. Even if only moderate forecasts for the number of the EVs become true, production of the base metals must increase by tens of percentages, or even more than double. At the same time, pyrometallurgical processes have to produce fewer side products, such as slag, and maintain the quality level of the primary product, although raw material mixtures are increasingly complex and new elements are entering the processes in secondary raw materials. Therefore, it is imperative to continue the development of pyrometallurgical processes more efficiently and productively, while still improving their selectivity regarding slagging the unwanted material and recovering the desired elements. This Special Issue is for current advances in the pyrometallurgical processing of metals, including all aspects, namely, the basic unit processes and operations in a smelter, metallurgical engineering, furnace integrity, cooling systems, modelling, slag and offgas handling, to name a few. A collection of 13 papers deal with ferrous and ferroalloy development, and the processing of different raw materials for metal production.
Technology: general issues --- blast furnace slag --- TiO2 --- titanium carbonitride --- viscosity --- limonite --- magnetization reduction roasting --- rotary kiln --- deposit --- fayalite --- FeO --- liquid phase --- medium manganese steel --- spinel inclusions --- Ce treatment --- modification mechanism --- copper concentrate --- pyrometallurgy --- flash smelting --- combustion --- classification --- spectroscopy --- PCA --- SIMCA --- PLS-DA --- k-NN --- support vector machines --- scandium --- master alloys --- aluminum alloys --- metallothermy --- vacuum induction melting --- factsage --- nickel laterite --- non-melting reducing --- sodium chloride --- magnetic separation --- garnierite --- vacuum carbothermal reduction --- mechanism --- CaF2 --- recovery --- devolatilization --- torrefied biomass --- bio-coal --- volatile matter --- reduction --- blast furnace --- multistage and deep reduction --- low-oxygen high titanium ferroalloy --- inclusions --- melt separation --- slag-metal separation --- hearth drainage --- iron and slag flow --- interface phenomena --- CaO-SiO2-FetO-P2O5 slag system --- distribution ratio of phosphorus --- dephosphorization --- n·2CaO·SiO2-3CaO·P2O5 solid solution --- B2O3 --- vanadium–titanium sintering --- metallurgical properties --- microstructures --- Søderberg electrodes --- submerged arc furnace (SAF) --- ferro-alloy production --- ferrochrome --- electrical resistivity --- degree of graphitisation --- bulk density --- porosity --- compressive breaking strength
Choose an application
There are several major megatrends having an impact on pyrometallurgical metal processing. The steadily growing demand for all metals is strengthened by the emergence of electrical vehicles (EV), which brings a high need for battery metals, but additionally, a significant increase in copper consumption. Even if only moderate forecasts for the number of the EVs become true, production of the base metals must increase by tens of percentages, or even more than double. At the same time, pyrometallurgical processes have to produce fewer side products, such as slag, and maintain the quality level of the primary product, although raw material mixtures are increasingly complex and new elements are entering the processes in secondary raw materials. Therefore, it is imperative to continue the development of pyrometallurgical processes more efficiently and productively, while still improving their selectivity regarding slagging the unwanted material and recovering the desired elements. This Special Issue is for current advances in the pyrometallurgical processing of metals, including all aspects, namely, the basic unit processes and operations in a smelter, metallurgical engineering, furnace integrity, cooling systems, modelling, slag and offgas handling, to name a few. A collection of 13 papers deal with ferrous and ferroalloy development, and the processing of different raw materials for metal production.
blast furnace slag --- TiO2 --- titanium carbonitride --- viscosity --- limonite --- magnetization reduction roasting --- rotary kiln --- deposit --- fayalite --- FeO --- liquid phase --- medium manganese steel --- spinel inclusions --- Ce treatment --- modification mechanism --- copper concentrate --- pyrometallurgy --- flash smelting --- combustion --- classification --- spectroscopy --- PCA --- SIMCA --- PLS-DA --- k-NN --- support vector machines --- scandium --- master alloys --- aluminum alloys --- metallothermy --- vacuum induction melting --- factsage --- nickel laterite --- non-melting reducing --- sodium chloride --- magnetic separation --- garnierite --- vacuum carbothermal reduction --- mechanism --- CaF2 --- recovery --- devolatilization --- torrefied biomass --- bio-coal --- volatile matter --- reduction --- blast furnace --- multistage and deep reduction --- low-oxygen high titanium ferroalloy --- inclusions --- melt separation --- slag-metal separation --- hearth drainage --- iron and slag flow --- interface phenomena --- CaO-SiO2-FetO-P2O5 slag system --- distribution ratio of phosphorus --- dephosphorization --- n·2CaO·SiO2-3CaO·P2O5 solid solution --- B2O3 --- vanadium–titanium sintering --- metallurgical properties --- microstructures --- Søderberg electrodes --- submerged arc furnace (SAF) --- ferro-alloy production --- ferrochrome --- electrical resistivity --- degree of graphitisation --- bulk density --- porosity --- compressive breaking strength
Choose an application
There are several major megatrends having an impact on pyrometallurgical metal processing. The steadily growing demand for all metals is strengthened by the emergence of electrical vehicles (EV), which brings a high need for battery metals, but additionally, a significant increase in copper consumption. Even if only moderate forecasts for the number of the EVs become true, production of the base metals must increase by tens of percentages, or even more than double. At the same time, pyrometallurgical processes have to produce fewer side products, such as slag, and maintain the quality level of the primary product, although raw material mixtures are increasingly complex and new elements are entering the processes in secondary raw materials. Therefore, it is imperative to continue the development of pyrometallurgical processes more efficiently and productively, while still improving their selectivity regarding slagging the unwanted material and recovering the desired elements. This Special Issue is for current advances in the pyrometallurgical processing of metals, including all aspects, namely, the basic unit processes and operations in a smelter, metallurgical engineering, furnace integrity, cooling systems, modelling, slag and offgas handling, to name a few. A collection of 13 papers deal with ferrous and ferroalloy development, and the processing of different raw materials for metal production.
Technology: general issues --- blast furnace slag --- TiO2 --- titanium carbonitride --- viscosity --- limonite --- magnetization reduction roasting --- rotary kiln --- deposit --- fayalite --- FeO --- liquid phase --- medium manganese steel --- spinel inclusions --- Ce treatment --- modification mechanism --- copper concentrate --- pyrometallurgy --- flash smelting --- combustion --- classification --- spectroscopy --- PCA --- SIMCA --- PLS-DA --- k-NN --- support vector machines --- scandium --- master alloys --- aluminum alloys --- metallothermy --- vacuum induction melting --- factsage --- nickel laterite --- non-melting reducing --- sodium chloride --- magnetic separation --- garnierite --- vacuum carbothermal reduction --- mechanism --- CaF2 --- recovery --- devolatilization --- torrefied biomass --- bio-coal --- volatile matter --- reduction --- blast furnace --- multistage and deep reduction --- low-oxygen high titanium ferroalloy --- inclusions --- melt separation --- slag-metal separation --- hearth drainage --- iron and slag flow --- interface phenomena --- CaO-SiO2-FetO-P2O5 slag system --- distribution ratio of phosphorus --- dephosphorization --- n·2CaO·SiO2-3CaO·P2O5 solid solution --- B2O3 --- vanadium–titanium sintering --- metallurgical properties --- microstructures --- Søderberg electrodes --- submerged arc furnace (SAF) --- ferro-alloy production --- ferrochrome --- electrical resistivity --- degree of graphitisation --- bulk density --- porosity --- compressive breaking strength
Choose an application
In the last few decades, near-infrared (NIR) spectroscopy has distinguished itself as one of the most rapidly advancing spectroscopic techniques. Mainly known as an analytical tool useful for sample characterization and content quantification, NIR spectroscopy is essential in various other fields, e.g. NIR imaging techniques in biophotonics, medical applications or used for characterization of food products. Its contribution in basic science and physical chemistry should be noted as well, e.g. in exploration of the nature of molecular vibrations or intermolecular interactions. One of the current development trends involves the miniaturization and simplification of instrumentation, creating prospects for the spread of NIR spectrometers at a consumer level in the form of smartphone attachments—a breakthrough not yet accomplished by any other analytical technique. A growing diversity in the related methods and applications has led to a dispersion of these contributions among disparate scientific communities. The aim of this Special Issue was to bring together the communities that may perceive NIR spectroscopy from different perspectives. It resulted in 30 contributions presenting the latest advances in the methodologies essential in near-infrared spectroscopy in a variety of applications.
n/a --- pocket-sized spectrometer --- standard germination tests --- total hydroxycinnamic derivatives --- hyperspectral image --- quantitative analysis modeling --- tissue --- chemotherapy --- FTIR spectroscopy --- cheese --- biomeasurements --- chemometrics --- affine invariance --- rapid identification --- biodiagnosis --- bioanalytical applications --- fat --- NIRS --- pixel-wise --- paraffin-embedded --- late preterm --- maize kernel --- photonics --- hyperspectral image processing --- image processing --- colorectal cancer --- test set validation --- deep convolutional neural network --- near-infrared fluorescence --- classification --- variety discrimination --- near-infrared hyperspectral imaging --- ensemble learning --- light --- origin traceability --- Paris polyphylla var. yunnanensis --- Fourier transform mid-infrared spectroscopy --- dry matter --- Fourier transform infrared spectroscopy --- hyperspectral imaging --- FT-NIR spectroscopy --- proximal sensing --- perfusion measurements --- near-infrared spectroscopy --- stained --- carotenoids --- cellular imaging --- perturbation --- direct model transferability --- clinical classifications --- counterfeit and substandard pharmaceuticals --- hyperspectral imaging technology --- spectral imaging --- SVM --- nutritional parameters --- extra virgin olive oil --- ethanol --- osteopathy --- living cells --- object-wise --- water-mirror approach --- Chrysanthemum --- bootstrapping soft shrinkage --- FTIR --- PLS-R --- multivariate data analysis --- combination bands --- binary dragonfly algorithm --- geographical origin --- Vitis vinifera L. --- glucose --- detection --- di-(2-picolyl)amine --- non-destructive sensor --- splanchnic --- adulteration --- animal origin --- melamine --- artemether --- MicroNIR™ --- brain --- fluorescent probes --- Folin–Ciocalteu --- SCiO --- support vector machine --- anharmonic quantum mechanical calculations --- PLSR --- Zn(II) --- RMSEP --- overtones --- blackberries --- pasta/sauce blends --- FT-IR --- partial least squares calibration --- partial least squares (PLS) --- auxiliary diagnosis --- handheld near-infrared spectroscopy --- precision viticulture --- partial least squares --- seeds vitality --- freeze-damaged --- near infrared --- discriminant analysis --- corn seed --- quantum chemical calculation --- anharmonic calculation --- Trichosanthis Fructus --- moisture --- analytical spectroscopy --- Raman spectroscopy --- NIR spectroscopy --- calibration transfer --- imaging --- water --- lumefantrine --- BRAF V600E mutation --- wavelength selection --- bone cancer --- imaging visualization --- near infrared spectroscopy --- raisins --- chemometric techniques --- data fusion --- prepared slices --- Ewing sarcoma --- biomonitoring --- Rubus fructicosus --- VIS/NIR hyperspectral imaging --- combinations bands --- quantitative analysis model --- partial least square regression --- DFT calculations --- TreeBagger --- antimalarial tablets --- accelerated aging --- agriculture --- crude drugs --- spectroscopy --- rice seeds --- PLS --- isotopic substitution --- multivariate calibration --- phytoextraction --- Fourier-transform near-infrared spectroscopy --- phenolics --- deparaffinized --- near-infrared (NIR) spectroscopy --- SIMCA --- counter propagation artificial neural network --- fructose --- PLS-DA --- ultra-high performance liquid chromatography --- aquaphotomics --- support vector machine-discriminant analysis --- hier-SVM --- DNA --- NIR --- support vector machine model --- API --- principal component analysis --- Folin-Ciocalteu
Listing 1 - 10 of 10 |
Sort by
|