Listing 1 - 10 of 337 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
We give some Monte Carlo results on the performance of two robust alternatives to least squares regression estimation - least absolute residuals and the one-step "sine" estimator. We show how to scale the residuals for the sine estimator to achieve constant efficiency at the Gaussian across various choices of X-matrix and give some results for the contaminated Gaussian distribution.
Choose an application
Choose an application
Four estimators of econometric models are compared for predictive accuracy. Two estimators assume that the parameters of the equations are subject to variation over time. The first of these, the adaptive regression technique (ADR), assumes that the intercept varies overtime, while the other, a varying-parameter regression technique (VPR), assumes that all parameters may be subject to variation. The other two estimators are ordinary least squares (OLS) and a robust estimator that gives less weight to large residuals. The vehicle for these experiments is the econometric model developed by Ray Fair. The main conclusion is that varying parameter techniques appear promising for the estimation of econometric models. They are clearly superior in the present context for short term forecasts. Of the two varying parameter techniques considered, ADR is superior over longer prediction intervals.
Choose an application
This book introduces several battery management problems and provides solutions using model-based approaches. It provides detailed coverage of battery management problems, including battery impedance estimation, battery capacity estimation, state of charge estimation, state of health estimation, battery thermal management, and optimal charging algorithms. The book introduces important battery management problems in a modularized fashion, decoupling each battery management problem from others as much as possible, allowing you to focus on understanding a particular topic rather than having to understand all aspects of a battery management system. You will get the necessary background to understand, implement and improve battery fuel gauges in electric vehicles, and general state of health of the battery; use proven models and algorithms to estimate the thermal properties of a battery; and know the basics of smart battery charger design. You will also be equipped to accurately estimate battery features of vehicles, such as state of charge, expected charging time, and state of health, to make customized charging waveforms for each vehicle. The book teaches you how to create simulation environments to test and validate algorithms against model uncertainty and measurement noise. In addition, the importance of benchmarking battery management algorithms is covered, and several bench marking metrics are presented. Included MATLAB codes give you an easy way to test the algorithms using realistic data and to develop and test alternative solutions. This is a useful and timely guide for battery engineers at all levels, as well as research scientists and advanced students working in this robust and rapidly advancing area.
Choose an application
Choose an application
Choose an application
Choose an application
Listing 1 - 10 of 337 | << page >> |
Sort by
|