Listing 1 - 10 of 10 |
Sort by
|
Choose an application
sugar beets --- seeds --- genetics --- rhizomania --- autumn-sown --- irrigration
Choose an application
viruses. --- viruses --- Rhizomania --- Sonde cdna --- Nervure jaune necrotique --- Polymyxa betae
Choose an application
Beta vulgaris --- Rhizomania --- Epidemiology --- Genetic control --- Disease resistance --- Transgenic plants
Choose an application
Beta vulgaris --- Rhizomania --- Plant viruses --- Necrosis --- Immunology --- genotypes --- Disease resistance --- Immunological techniques
Choose an application
Beta vulgaris --- Rhizomania virus --- genetic code --- genotypes --- mutation. --- mutation --- Hydrophobicity --- Transcription factors
Choose an application
viruses. --- viruses --- Rhizomania --- Molecular hybridization --- Nervure necrotique --- Extrait de plante --- Sonde froide --- Bnyvv --- Hybridation sur membrane --- Dot-blotting
Choose an application
Sugarbeet --- Rhizomania --- Plant viruses --- PCR --- Agrobacterium --- culture media --- In vitro culture --- Virusfree plants --- genetic markers --- Polymyxa betae --- Methode mugnier --- Method rahman
Choose an application
This compilation of articles elaborates on plant virus diseases that are among the most recent epidemiological concerns. The chapters explore several paradigms in plant virus epidemiology, outbreaks, epidemics, and pandemics paralleling zoonotic viruses and that can be consequential to global food security. There is evidence that the local, regional, national, and global trade of agricultural products has aided the global dispersal of plant virus diseases. Expanding farmlands into pristine natural areas has created opportunities for viruses in native landscapes to invade crops, while the movement of food and food products disseminates viruses, creating epidemics or pandemics. Moreover, plant virus outbreaks not only directly impact food supply, but also incidentally affect human health.
Research & information: general --- sugar beet --- rhizomania --- RNAseq --- virus --- necrovirus --- helper virus --- Aphis gossypii --- Cucumis melo --- cucurbit viruses --- disease progress curve --- insect trapping --- logistic model --- Spearman correlation --- temporal dynamics --- Bunyavirale --- RNA virus --- emerging virus --- virus evolution --- plant virus --- cophylogeny --- hallmark genes --- common bean --- Phaseolus vulgaris --- cytorhabdovirus --- whitefly --- Bemisia tabaci --- vector --- virus transmission --- ToTV --- emerging disease --- prevalence --- whole-genome sequencing --- phylogeny --- tomato torrado virus --- sGFP --- plant pathology --- infectious clone --- plant-virus interaction --- pandemics --- epidemics --- global --- disease --- threat --- food insecurity --- crop losses --- crop failure --- indigenous viruses --- introduced crops --- new encounter --- spillover --- developing countries --- domestication centers --- sub–Saharan Africa --- Potyviruses --- whole genome sequencing --- epidemiology --- virus resistance --- virus host interactions --- plant viruses --- viral vectors --- plant diseases --- virus spread --- biopharming --- vaccines --- viruses --- Nicotiana benthamiana --- COVID-19 --- plant-based biologics production --- n/a --- sub-Saharan Africa
Choose an application
This compilation of articles elaborates on plant virus diseases that are among the most recent epidemiological concerns. The chapters explore several paradigms in plant virus epidemiology, outbreaks, epidemics, and pandemics paralleling zoonotic viruses and that can be consequential to global food security. There is evidence that the local, regional, national, and global trade of agricultural products has aided the global dispersal of plant virus diseases. Expanding farmlands into pristine natural areas has created opportunities for viruses in native landscapes to invade crops, while the movement of food and food products disseminates viruses, creating epidemics or pandemics. Moreover, plant virus outbreaks not only directly impact food supply, but also incidentally affect human health.
sugar beet --- rhizomania --- RNAseq --- virus --- necrovirus --- helper virus --- Aphis gossypii --- Cucumis melo --- cucurbit viruses --- disease progress curve --- insect trapping --- logistic model --- Spearman correlation --- temporal dynamics --- Bunyavirale --- RNA virus --- emerging virus --- virus evolution --- plant virus --- cophylogeny --- hallmark genes --- common bean --- Phaseolus vulgaris --- cytorhabdovirus --- whitefly --- Bemisia tabaci --- vector --- virus transmission --- ToTV --- emerging disease --- prevalence --- whole-genome sequencing --- phylogeny --- tomato torrado virus --- sGFP --- plant pathology --- infectious clone --- plant-virus interaction --- pandemics --- epidemics --- global --- disease --- threat --- food insecurity --- crop losses --- crop failure --- indigenous viruses --- introduced crops --- new encounter --- spillover --- developing countries --- domestication centers --- sub–Saharan Africa --- Potyviruses --- whole genome sequencing --- epidemiology --- virus resistance --- virus host interactions --- plant viruses --- viral vectors --- plant diseases --- virus spread --- biopharming --- vaccines --- viruses --- Nicotiana benthamiana --- COVID-19 --- plant-based biologics production --- n/a --- sub-Saharan Africa
Choose an application
This compilation of articles elaborates on plant virus diseases that are among the most recent epidemiological concerns. The chapters explore several paradigms in plant virus epidemiology, outbreaks, epidemics, and pandemics paralleling zoonotic viruses and that can be consequential to global food security. There is evidence that the local, regional, national, and global trade of agricultural products has aided the global dispersal of plant virus diseases. Expanding farmlands into pristine natural areas has created opportunities for viruses in native landscapes to invade crops, while the movement of food and food products disseminates viruses, creating epidemics or pandemics. Moreover, plant virus outbreaks not only directly impact food supply, but also incidentally affect human health.
Research & information: general --- sugar beet --- rhizomania --- RNAseq --- virus --- necrovirus --- helper virus --- Aphis gossypii --- Cucumis melo --- cucurbit viruses --- disease progress curve --- insect trapping --- logistic model --- Spearman correlation --- temporal dynamics --- Bunyavirale --- RNA virus --- emerging virus --- virus evolution --- plant virus --- cophylogeny --- hallmark genes --- common bean --- Phaseolus vulgaris --- cytorhabdovirus --- whitefly --- Bemisia tabaci --- vector --- virus transmission --- ToTV --- emerging disease --- prevalence --- whole-genome sequencing --- phylogeny --- tomato torrado virus --- sGFP --- plant pathology --- infectious clone --- plant-virus interaction --- pandemics --- epidemics --- global --- disease --- threat --- food insecurity --- crop losses --- crop failure --- indigenous viruses --- introduced crops --- new encounter --- spillover --- developing countries --- domestication centers --- sub-Saharan Africa --- Potyviruses --- whole genome sequencing --- epidemiology --- virus resistance --- virus host interactions --- plant viruses --- viral vectors --- plant diseases --- virus spread --- biopharming --- vaccines --- viruses --- Nicotiana benthamiana --- COVID-19 --- plant-based biologics production
Listing 1 - 10 of 10 |
Sort by
|