Narrow your search

Library

KU Leuven (3)

VUB (3)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UAntwerpen (2)

UCLL (2)

UHasselt (2)

ULiège (2)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2016 (1)

2009 (1)

1985 (1)

1975 (1)

Listing 1 - 4 of 4
Sort by
Functional integration and partial differential equations
Author:
ISBN: 0691083541 1400881595 Year: 1985 Publisher: Princeton, N.J.

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book discusses some aspects of the theory of partial differential equations from the viewpoint of probability theory. It is intended not only for specialists in partial differential equations or probability theory but also for specialists in asymptotic methods and in functional analysis. It is also of interest to physicists who use functional integrals in their research. The work contains results that have not previously appeared in book form, including research contributions of the author.

Keywords

Partial differential equations --- Differential equations, Partial. --- Probabilities. --- Integration, Functional. --- Functional integration --- Functional analysis --- Integrals, Generalized --- Probability --- Statistical inference --- Combinations --- Mathematics --- Chance --- Least squares --- Mathematical statistics --- Risk --- A priori estimate. --- Absolute continuity. --- Almost surely. --- Analytic continuation. --- Axiom. --- Big O notation. --- Boundary (topology). --- Boundary value problem. --- Bounded function. --- Calculation. --- Cauchy problem. --- Central limit theorem. --- Characteristic function (probability theory). --- Chebyshev's inequality. --- Coefficient. --- Comparison theorem. --- Continuous function (set theory). --- Continuous function. --- Convergence of random variables. --- Cylinder set. --- Degeneracy (mathematics). --- Derivative. --- Differential equation. --- Differential operator. --- Diffusion equation. --- Diffusion process. --- Dimension (vector space). --- Direct method in the calculus of variations. --- Dirichlet boundary condition. --- Dirichlet problem. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Elliptic operator. --- Elliptic partial differential equation. --- Equation. --- Existence theorem. --- Exponential function. --- Feynman–Kac formula. --- Fokker–Planck equation. --- Function space. --- Functional analysis. --- Fundamental solution. --- Gaussian measure. --- Girsanov theorem. --- Hessian matrix. --- Hölder condition. --- Independence (probability theory). --- Integral curve. --- Integral equation. --- Invariant measure. --- Iterated logarithm. --- Itô's lemma. --- Joint probability distribution. --- Laplace operator. --- Laplace's equation. --- Lebesgue measure. --- Limit (mathematics). --- Limit cycle. --- Limit point. --- Linear differential equation. --- Linear map. --- Lipschitz continuity. --- Markov chain. --- Markov process. --- Markov property. --- Maximum principle. --- Mean value theorem. --- Measure (mathematics). --- Modulus of continuity. --- Moment (mathematics). --- Monotonic function. --- Navier–Stokes equations. --- Nonlinear system. --- Ordinary differential equation. --- Parameter. --- Partial differential equation. --- Periodic function. --- Poisson kernel. --- Probabilistic method. --- Probability space. --- Probability theory. --- Probability. --- Random function. --- Regularization (mathematics). --- Schrödinger equation. --- Self-adjoint operator. --- Sign (mathematics). --- Simultaneous equations. --- Smoothness. --- State-space representation. --- Stochastic calculus. --- Stochastic differential equation. --- Stochastic. --- Support (mathematics). --- Theorem. --- Theory. --- Uniqueness theorem. --- Variable (mathematics). --- Weak convergence (Hilbert space). --- Wiener process.


Book
Matrices, Moments and Quadrature with Applications
Authors: ---
ISBN: 9780691143415 0691143412 9786612458019 1282936077 1282458019 1400833884 9781400833887 9781282458017 Year: 2009 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. The book bridges different mathematical areas to obtain algorithms to estimate bilinear forms involving two vectors and a function of the matrix. The first part of the book provides the necessary mathematical background and explains the theory. The second part describes the applications and gives numerical examples of the algorithms and techniques developed in the first part. Applications addressed in the book include computing elements of functions of matrices; obtaining estimates of the error norm in iterative methods for solving linear systems and computing parameters in least squares and total least squares; and solving ill-posed problems using Tikhonov regularization. This book will interest researchers in numerical linear algebra and matrix computations, as well as scientists and engineers working on problems involving computation of bilinear forms.

Keywords

Matrices. --- Numerical analysis. --- Mathematical analysis --- Algebra, Matrix --- Cracovians (Mathematics) --- Matrix algebra --- Matrixes (Algebra) --- Algebra, Abstract --- Algebra, Universal --- Matrices --- Numerical analysis --- Algorithm. --- Analysis of algorithms. --- Analytic function. --- Asymptotic analysis. --- Basis (linear algebra). --- Basis function. --- Biconjugate gradient method. --- Bidiagonal matrix. --- Bilinear form. --- Calculation. --- Characteristic polynomial. --- Chebyshev polynomials. --- Coefficient. --- Complex number. --- Computation. --- Condition number. --- Conjugate gradient method. --- Conjugate transpose. --- Cross-validation (statistics). --- Curve fitting. --- Degeneracy (mathematics). --- Determinant. --- Diagonal matrix. --- Dimension (vector space). --- Eigenvalues and eigenvectors. --- Equation. --- Estimation. --- Estimator. --- Exponential function. --- Factorization. --- Function (mathematics). --- Function of a real variable. --- Functional analysis. --- Gaussian quadrature. --- Hankel matrix. --- Hermite interpolation. --- Hessenberg matrix. --- Hilbert matrix. --- Holomorphic function. --- Identity matrix. --- Interlacing (bitmaps). --- Inverse iteration. --- Inverse problem. --- Invertible matrix. --- Iteration. --- Iterative method. --- Jacobi matrix. --- Krylov subspace. --- Laguerre polynomials. --- Lanczos algorithm. --- Linear differential equation. --- Linear regression. --- Linear subspace. --- Logarithm. --- Machine epsilon. --- Matrix function. --- Matrix polynomial. --- Maxima and minima. --- Mean value theorem. --- Meromorphic function. --- Moment (mathematics). --- Moment matrix. --- Moment problem. --- Monic polynomial. --- Monomial. --- Monotonic function. --- Newton's method. --- Numerical integration. --- Numerical linear algebra. --- Orthogonal basis. --- Orthogonal matrix. --- Orthogonal polynomials. --- Orthogonal transformation. --- Orthogonality. --- Orthogonalization. --- Orthonormal basis. --- Partial fraction decomposition. --- Polynomial. --- Preconditioner. --- QR algorithm. --- QR decomposition. --- Quadratic form. --- Rate of convergence. --- Recurrence relation. --- Regularization (mathematics). --- Rotation matrix. --- Singular value. --- Square (algebra). --- Summation. --- Symmetric matrix. --- Theorem. --- Tikhonov regularization. --- Trace (linear algebra). --- Triangular matrix. --- Tridiagonal matrix. --- Upper and lower bounds. --- Variable (mathematics). --- Vector space. --- Weight function.


Book
Fourier analysis on local fields
Author:
ISBN: 0691618127 0691645167 1400871336 9781400871339 0691081654 9780691081656 Year: 1975 Volume: 15 Publisher: Princeton (N.J.): Princeton university press

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book presents a development of the basic facts about harmonic analysis on local fields and the n-dimensional vector spaces over these fields. It focuses almost exclusively on the analogy between the local field and Euclidean cases, with respect to the form of statements, the manner of proof, and the variety of applications.The force of the analogy between the local field and Euclidean cases rests in the relationship of the field structures that underlie the respective cases. A complete classification of locally compact, non-discrete fields gives us two examples of connected fields (real and complex numbers); the rest are local fields (p-adic numbers, p-series fields, and their algebraic extensions). The local fields are studied in an effort to extend knowledge of the reals and complexes as locally compact fields.The author's central aim has been to present the basic facts of Fourier analysis on local fields in an accessible form and in the same spirit as in Zygmund's Trigonometric Series (Cambridge, 1968) and in Introduction to Fourier Analysis on Euclidean Spaces by Stein and Weiss (1971).Originally published in 1975.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Fourier analysis. --- Local fields (Algebra) --- Fields, Local (Algebra) --- Algebraic fields --- Analysis, Fourier --- Mathematical analysis --- Corps algébriques --- Fourier analysis --- 511 --- 511 Number theory --- Number theory --- Local fields (Algebra). --- Harmonic analysis. Fourier analysis --- Fourier Analysis --- Abelian group. --- Absolute continuity. --- Absolute value. --- Addition. --- Additive group. --- Algebraic extension. --- Algebraic number field. --- Bessel function. --- Beta function. --- Borel measure. --- Bounded function. --- Bounded variation. --- Boundedness. --- Calculation. --- Cauchy–Riemann equations. --- Characteristic function (probability theory). --- Complex analysis. --- Conformal map. --- Continuous function. --- Convolution. --- Coprime integers. --- Corollary. --- Coset. --- Determinant. --- Dimension (vector space). --- Dimension. --- Dirichlet kernel. --- Discrete space. --- Distribution (mathematics). --- Endomorphism. --- Field of fractions. --- Finite field. --- Formal power series. --- Fourier series. --- Fourier transform. --- Gamma function. --- Gelfand. --- Haar measure. --- Haar wavelet. --- Half-space (geometry). --- Hankel transform. --- Hardy's inequality. --- Harmonic analysis. --- Harmonic function. --- Homogeneous distribution. --- Integer. --- Lebesgue integration. --- Linear combination. --- Linear difference equation. --- Linear map. --- Linear space (geometry). --- Local field. --- Lp space. --- Maximal ideal. --- Measurable function. --- Measure (mathematics). --- Mellin transform. --- Metric space. --- Modular form. --- Multiplicative group. --- Norbert Wiener. --- P-adic number. --- Poisson kernel. --- Power series. --- Prime ideal. --- Probability. --- Product metric. --- Rational number. --- Regularization (mathematics). --- Requirement. --- Ring (mathematics). --- Ring of integers. --- Scalar multiplication. --- Scientific notation. --- Sign (mathematics). --- Smoothness. --- Special case. --- Special functions. --- Subgroup. --- Subring. --- Support (mathematics). --- Theorem. --- Topological space. --- Unitary operator. --- Vector space. --- Analyse harmonique (mathématiques) --- Analyse harmonique (mathématiques) --- Corps algébriques


Book
Prospects in Topology (AM-138), Volume 138 : Proceedings of a Conference in Honor of William Browder. (AM-138)
Author:
ISBN: 1400882583 Year: 2016 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This collection brings together influential papers by mathematicians exploring the research frontiers of topology, one of the most important developments of modern mathematics. The papers cover a wide range of topological specialties, including tools for the analysis of group actions on manifolds, calculations of algebraic K-theory, a result on analytic structures on Lie group actions, a presentation of the significance of Dirac operators in smoothing theory, a discussion of the stable topology of 4-manifolds, an answer to the famous question about symmetries of simply connected manifolds, and a fresh perspective on the topological classification of linear transformations. The contributors include A. Adem, A. H. Assadi, M. Bökstedt, S. E. Cappell, R. Charney, M. W. Davis, P. J. Eccles, M. H. Freedman, I. Hambleton, J. C. Hausmann, S. Illman, G. Katz, M. Kreck, W. Lück, I. Madsen, R. J. Milgram, J. Morava, E. K. Pedersen, V. Puppe, F. Quinn, A. Ranicki, J. L. Shaneson, D. Sullivan, P. Teichner, Z. Wang, and S. Weinberger.

Keywords

Topology --- Adjunction (field theory). --- Algebraic cycle. --- Algebraic topology. --- Analytic function. --- Automorphism. --- Base change. --- Basis (linear algebra). --- Borel conjecture. --- Characteristic class. --- Circle group. --- Classifying space. --- Cobordism. --- Codimension. --- Cohomology ring. --- Cohomology. --- Combinatorial group theory. --- Commutative diagram. --- Commutative property. --- Compactification (mathematics). --- Coxeter group. --- Cyclic group. --- Cyclic homology. --- Diagram (category theory). --- Diffeomorphism. --- Differentiable manifold. --- Differential topology. --- Dimension (vector space). --- Dirac operator. --- Discrete valuation ring. --- Divisor (algebraic geometry). --- Elliptic operator. --- Equivariant K-theory. --- Equivariant cohomology. --- Equivariant map. --- Exterior (topology). --- Exterior algebra. --- Fiber bundle. --- Fibration. --- Fundamental group. --- Gauss map. --- Geometrization conjecture. --- Group algebra. --- H-cobordism. --- Homeomorphism. --- Homotopy fiber. --- Homotopy group. --- Homotopy. --- Hopf algebra. --- Identity matrix. --- Inclusion map. --- Intersection form (4-manifold). --- Isomorphism class. --- J-homomorphism. --- Knot theory. --- L-theory. --- Lens space. --- Lie algebra. --- Lie group. --- Linear algebra. --- Mapping cone (homological algebra). --- Mapping cone (topology). --- Marriage theorem. --- Metric space. --- Moduli space. --- Motivic cohomology. --- Neighbourhood (mathematics). --- Operator norm. --- Pushout (category theory). --- Quasi-isometry. --- Quotient space (topology). --- Real projective space. --- Regularization (mathematics). --- Representation theory. --- Riemann surface. --- Riemannian manifold. --- Set (mathematics). --- Sheaf (mathematics). --- Sign (mathematics). --- Simplicial complex. --- Stable homotopy theory. --- Subgroup. --- Submanifold. --- Submersion (mathematics). --- Subset. --- Support (mathematics). --- Sylow theorems. --- Tangent space. --- Theorem. --- Topological K-theory. --- Topological group. --- Topological manifold. --- Topological space. --- Topology. --- Torsion sheaf. --- Transversality (mathematics). --- Unification (computer science). --- Vector bundle. --- Whitehead torsion. --- Zariski topology. --- Zorn's lemma.

Listing 1 - 4 of 4
Sort by