Narrow your search

Library

UGent (3)


Resource type

article (3)


Language

Undetermined (3)


Year
From To Submit

2004 (1)

2003 (1)

1999 (1)

Listing 1 - 3 of 3
Sort by

Article
Partial reversal of the effect of maternal care on cognitive function through environmental enrichment.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Maternal care influences hippocampal development in the rat. The offspring of mothers that exhibit increased levels of pup licking/grooming and arched-back nursing (High LG-ABN mothers) show increased hippocampal N-methyl-D-aspartate (NMDA) receptor binding and enhanced hippocampal-dependent spatial learning. In these studies we examined whether environmental enrichment from days 22-70 of life might reverse the effects of low maternal care. Environmental enrichment eliminated the differences between the offspring of High and Low LG-ABN mothers in both Morris water maze learning and object recognition. However, enrichment did not reverse the effect of maternal care on long-term potentiation in the dentate gyrus or on hippocampal NMDA receptor binding. In contrast, peripubertal enrichment did reverse the effects of maternal care on hippocampal a-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor binding. These findings provide evidence for the reversal of the effects of reduced maternal investment in early life on cognitive function in adulthood. Such effects might involve compensatory changes associated with peripubertal enrichment. (C) 2003 IBRO. Published by Elsevier Science Ltd. All rights reserved


Article
Peripubertal environmental enrichment reverses the effects of maternal care on hippocampal development and glutamate receptor subunit expression.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Maternal care in the rat influences the development of cognitive function in the offspring through neural systems known to mediate activity-dependent synaptic plasticity. The offspring of mothers that exhibit increased levels of pup licking/grooming (high-LG mothers) show increased hippocampal N-methyl-D-aspartate (NMDA) subunit mRNA expression, enhanced synaptogenesis and improved hippocampal-dependent spatial learning in comparison with animals reared by low-LG mothers. The effects of reduced maternal care on cognitive function are reversed with peripubertal environmental enrichment; however, the neural mechanisms mediating this effect are not known. In these studies we exposed the offspring of high- and low-LG mothers to environmental enrichment from days 22 to 70 of life, and measured the expression of genes encoding for glutamate receptor subunits and synaptophysin expression as a measure of synaptic density. Environmental enrichment reversed the effects of maternal care on synaptic density and this effect was, in turn, associated with a reversal of the effect of maternal care on the NR2A and NR2B subunits of the NMDA receptor, as well as effects on (RS)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits. Finally, direct infusion of an NR2B-specific NMIDA receptor antagonist into the hippocampus eliminated the effects of maternal care on spatial learning/memory in the Morris water maze. These findings suggest that: (1) the effects of maternal care are mediated by changes in NR2B gene expression; and (2) that environmental enrichment reverses the effects of reduced maternal care through the same genomic target, the NR2B gene, and possibly effects on other subunits of the NMIDA and AMPA receptors


Article
Environmental enrichment inhibits spontaneous apoptosis, prevents seizures and is neuroprotective.
Authors: --- --- --- ---
Year: 1999

Loading...
Export citation

Choose an application

Bookmark

Abstract

The mammalian brain has a high degree of plasticity, with dentate granule cell neurogenesis(1) and glial(2,3) proliferation stimulated by an enriched environment combining both complex inanimate and social stimulation. Moreover, rodents exposed to an enriched environment both before and after a cerebral insult show improved cognitive performance(1,4). One of the most robust associations of environmental enrichment is improved learning and memory in the Morris water maze, a spatial task that mainly involves the hippocampus(5). Furthermore, clinical evidence showing an association between higher educational attainment and reduced risk of Alzheimer(6) and Parkinson-related dementia(7) indicates that a stimulating environment has positive effects on cerebral health that may provide some resilience to cerebral insults. Here we show that in addition to its effects on neurogenesis, an enriched environment reduces spontaneous apoptotic cell death in the rat hippocampus by 45%. Moreover, these environmental conditions protect against kainate-induced seizures and excitotoxic injury. The enriched environment induces expression of glial-derived neurotrophic factor and brain-derived neurotrophic factor and increases phosphorylation of the transcription factor cyclic-AMP response element binding protein, indicating that the; influence of the environment on spontaneous apoptosis and cerebral resistance to insults may be mediated through transcription factor activation and induction of growth factor expression

Listing 1 - 3 of 3
Sort by