Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Purpose: By increasing lung volume and decreasing respiration-induced tumor motion amplitude, administration of continuous positive airway pressure (CPAP) during radiation therapy (RT) could allow for better sparing of the lungs and heart. However, it is unknown whether these effects are reproducible over time. Notably, different levels of lung inflation from day to day might cause tumor baseline shifts, and reduce the expected gain of the approach. In this study, we evaluated the reproducibility of the effect of CPAP on lung volume and tumor motion amplitude, the resulting effect on baseline shift, and the dosimetric impact of the strategy. Methods: Twenty patients with lung tumors referred for RT UNDERWENT 4d-CT scans with and without CPAP (CPAP/no CPAP) at two time points (T0/T1). CPAP and no CPAP scans were compared for lung volume, tumor motion amplitude, and baseline shift. For the five patients showing the largest lung volume increase, CPAP and noCPAP treatment plans were computed and compared for lung and heart dose parameters. Results: On average, CPAP increased lung volume by 8.0 % and 6, 3 % at T0 and T1, respectively, but did not change tumor motion amplitude or baseline shift. In four out of the five selected patients, CPAP allowed for a reduction in mean ling dose ranging from 8,5% to 15.0%, while having negligible influence on heart dose. Conclusions: In patients undergoing RT for lung tumors, CPAP increased lung volume, without modifying tumor motion or baseline shift. As a result, CPAP allowed for decrease in radiation dose to the lungs in selected patients. Buts : la respiration induit un déplacement des tumeurs bronchiques tout au long du cycle respiratoire. Ce mouvement, spécifique à chaque patient, présente une trajectoire et une amplitude variables en fonction de la localisation de la tumeur, pouvant atteindre 3 cm pour les tumeurs à proximité du diaphragme. Pour compliquer les choses, la respiration, et donc les caractéristiques du mouvement de la tumeur (position moyenne, trajectoire, amplitude), subissent des modifications significatives au cours du temps, entre la simulation et le traitement, durant une séance de radiothérapie, ou entre les différentes fractions. Ce mouvement et ces variations temporelles constituent donc une source d'incertitudes géométriques majeures pouvant contrecarrer l'objectif de précision de la radiothérapie. Afin de garantir une couverture de dose adéquate à la tumeur, l'ensemble de ces incertitudes est inclus dans une marge de sécurité (Planning Target Volume - PTV). Au plus ces incertitudes sont importantes, au plus la marge de sécurité est grande, au détriment de l'irradiation des tissus sains.La CPAP (Continuous Positive Airway Pressure) pourrait constituer un moyen simple de réduire l'ensemble de ces incertitudes géométriques, et donc les marges de sécurité qui en découlent. Ce dispositif permet d'imposer une pression positive de 4 à 20 cm d'eau (débit de 20 à 60 litres/min) dans les voies aériennes durant l'entièreté du cycle respiratoire. Il induit ainsi un statut pulmonaire hyperinflatoire. Plusieurs bénéfices pourraient être escomptés:1) en augmentant le volume pulmonaire, il pourrait réduire la densité et le volume de parenchyme pulmonaire irradié pour un volume cible donné; 2)le statut hyperinflatoire pourrait restreindre l'ampliation thoracique lors de la respiration, et donc l'amplitude du mouvement interne de la tumeur; 3) la pression positive pourrait également réduire les variations spontanées du statut inflatoire des poumons, et ainsi améliorer la reproductibilité du mouvement et de la position moyenne de la tumeur ( baseline) au cours du temps. Méthodes : 20 patients présentant un cancer pulmonaire traités par radiothérapie ont bénéficié d'un scanner 4D avec et sans CPAP (CPAP/noCPAP), à deux reprises à quelques jours d'intervalle (TO/T1). Les scanners avec et sans CPAP ont été comparés au point de vue du volume pulmonaire, du mouvement tumoral et du baseline shift. Pour les 5 patients présentant la plus grande majoration du volume pulmonaire, la planification de traitement avec et sans CPAP a été réalisée. Ceci nous a permis de comparer les doses au niveau cardiaque et pulmonaire, avec et sans CPAP. Résultats : en moyenne l’administration de CPAP a mené à une augmentation de volume pulmonaire de 8,0% au T0 et 6,3 % au T1, par contre l’amplitude tumorale et le baseline shift n’ont pas été significativement modifiés. Chez 4 des 5 patients sélectionnés, la CPAP a permis une diminution de la dose moyenne délivrée au poumon comprise entre 8,5% et 15,0%, avec un impact négligeable au niveau cardiaque. Conclusions : Chez les patients bénéficiant d’une radiothérapie pour un cancer pulmonaire, la CPAP a mené à une augmentation du volume pulmonaire, sans modification de l’amplitude tumorale ou du baseline shift. Par conséquent, l’utilisation de la CPAP a permis de diminuer la dose délivrée aux poumons chez les patients sélectionnés.
Choose an application
Treatment of abdominal cancers is a complex and dynamic area of oncology, and radiation therapy is playing an increasingly prominent role. The purpose of this book is to provide a step-by-step guide to image-guided radiation treatment (IGRT) for abdominal cancers. The book not only provides information for radiation oncologists and medical physicists on the evidence that broadly drives our practice, but also discusses practical details that arise in the day-to-day management. Finally, the authors also address the shortcomings of our present-day knowledge and look forward to future directions. This text is divided into four broad categories: an overview of IGRT on abdominal cancers; principles of IGRT for abdominal cancer; practice of IGRT for abdominal cancer; advances in IGRT for abdominal cancers. As such, the book not only covers the fundamental knowledge required to implement the IGRT techniques in abdominal cancer treatment with detailed operational procedures involved, but also provides an overview of emerging techniques for future application. Part of IPEM-IOP Series in Physics and Engineering in Medicine and Biology.
Abdomen --- Image-guided radiation therapy. --- Abdominal Neoplasms --- Radiotherapy, Image-Guided. --- Medical physics. --- SCIENCE / Radiation. --- Cancer --- Radiotherapy. --- radiotherapy.
Choose an application
This book provides the reader with an in-depth knowledge of physics principles and technology of image-guided radiotherapy (IGRT) that is changing the way radiotherapy is practiced.
Image-guided radiation therapy. --- Radiotherapy, Image-Guided. --- Medical physics. --- Medical physics and biophysics. --- Radiotherapy, Image --- Guided. --- Biophysics --- Biophysical Phenomena. --- Health Physics.
Choose an application
"Moving and Handling Patients at a Glance provides an accessible introduction to the key theoretical underpinnings of moving and handling, including the legal aspects, biomechanics, risk assessment and safe principles of handling"--Provided by publisher.
Moving and Lifting Patients --- Patients --- Transport of sick and wounded. --- Transport des malades et des blessés --- nursing. --- methods. --- Positioning. --- Positionnement --- Tiltechnieken --- Patiëntenvervoer --- Ergonomie --- Verpleegkunde --- Tiltechniek --- Transport of sick and wounded --- Transportation of Patients --- Patient Positioning --- Transport, Wounded and Sick --- Transport of Wounded and Sick --- Patients Transportation --- Patients Transportations --- Wounds and Injuries --- Stretchers --- Patient positioning --- Positioning of patients --- Sick --- Care of the sick --- Posture --- Therapeutic positioning equipment --- Sick, Transport of --- Transfer of sick and wounded --- Transportation of sick --- Transportation of wounded --- Wounded, Transport of --- First aid in illness and injury --- Positioning --- methods --- nursing --- Transportation --- Patient Positionings --- Positioning, Patient --- Positionings, Patient --- Radiotherapy, Image-Guided --- 65.015.1 --- 65.015.1 Methodeleer. Vereenvoudiging van de arbeid --- 65.015.1 Method study. Simplification of work --- Methodeleer. Vereenvoudiging van de arbeid --- Method study. Simplification of work --- Access to Transportation --- Accessible Transportation --- Transportation Access --- Transportation Accessibility --- Access to Transportations --- Access, Transportation --- Accessibility, Transportation --- Accessible Transportations --- Transportation Accessibilities --- Transportation, Accessible
Choose an application
This book summarizes the recent advancements for visualized medicine in terms of fundamental principles, rapidly emerging techniques (artificial intelligence (AI), surgical robots, etc.), revolutionary impacts on disease diagnosis, treatments and prognosis and developing frontiers. Especially with the combination of artificial intelligence (AI), medical imaging agents and medical robots, smart medical technologies have been innovated and applied to the clinical uses to serve the fatal human diseases diagnosis, treatment, prognosis and data analysis. This philosophy comprehensively revolutionizes the treatment strategy of human healthcare, and will enable precision medicine and precision surgery further intuitively detectable, smartly analyzable and accurately operational. This book will discuss and conclude: 1) state-of-the-art definition of visualized medicine; 2) advanced techniques and clinical applications of visualized medicine in the past decade; 3) novel frontiers and brand-new technologies, e.g. artificial intelligence (AI), surgical robots, etc. 4) revolutionary impacts on disease diagnosis, treatments and prognosis; 5) future challenges and perspectives.
Diagnostic Imaging. --- Image Processing, Computer-Assisted. --- Multimodal Imaging. --- Surgery, Computer-Assisted. --- Robotic Surgical Procedures. --- Brain-Computer Interfaces. --- Contrast Media. --- Endoscopes. --- Radiotherapy, Image-Guided. --- Drug Therapy. --- Therapy, Drug --- Chemotherapy --- Pharmacotherapy --- Chemotherapies --- Drug Therapies --- Pharmacotherapies --- Therapies, Drug --- Disease --- Pharmaceutical Preparations --- Pharmacologic Actions --- Image-Guided Radiation Therapy --- Radiotherapy Target Organ Alignment --- Target Organ Alignment, Radiotherapy --- Image Guided Radiation Therapy --- Image-Guided Radiation Therapies --- Image-Guided Radiotherapies --- Image-Guided Radiotherapy --- Radiation Therapies, Image-Guided --- Radiation Therapy, Image-Guided --- Radiotherapies, Image-Guided --- Radiotherapy, Image Guided --- Therapies, Image-Guided Radiation --- Therapy, Image-Guided Radiation --- Endoscope --- Endoscopy --- Contrast Agent --- Contrast Agents --- Contrast Material --- Contrast Materials --- Radiocontrast Agent --- Radiocontrast Agents --- Radiocontrast Media --- Radiopaque Media --- Agent, Contrast --- Agent, Radiocontrast --- Agents, Contrast --- Agents, Radiocontrast --- Material, Contrast --- Materials, Contrast --- Media, Contrast --- Media, Radiocontrast --- Media, Radiopaque --- Radiography --- Brain-Computer Interface --- Brain-Machine Interfaces --- Brain Machine Interface --- Brain Computer Interface --- Brain Computer Interfaces --- Brain Machine Interfaces --- Brain-Machine Interface --- Interface, Brain Machine --- Interface, Brain-Computer --- Interface, Brain-Machine --- Interfaces, Brain Machine --- Interfaces, Brain-Computer --- Interfaces, Brain-Machine --- Machine Interface, Brain --- Machine Interfaces, Brain --- Robot Surgery --- Robot-Assisted Surgery --- Robot-Enhanced Procedures --- Robot-Enhanced Surgery --- Robotic-Assisted Surgery --- Surgical Procedures, Robotic --- Procedure, Robot-Enhanced --- Procedure, Robotic Surgical --- Procedures, Robotic Surgical --- Robot Assisted Surgery --- Robot Enhanced Procedures --- Robot Enhanced Surgery --- Robot Surgeries --- Robot-Assisted Surgeries --- Robot-Enhanced Procedure --- Robot-Enhanced Surgeries --- Robotic Assisted Surgery --- Robotic Surgical Procedure --- Robotic-Assisted Surgeries --- Surgery, Robot --- Surgery, Robot-Assisted --- Surgery, Robot-Enhanced --- Surgery, Robotic-Assisted --- Surgical Procedure, Robotic --- Robotics --- Computer-Aided Surgery --- Computer-Assisted Surgery --- Image-Guided Surgery --- Surgery, Image-Guided --- Surgical Navigation --- Computer Aided Surgery --- Computer Assisted Surgery --- Computer-Aided Surgeries --- Computer-Assisted Surgeries --- Image Guided Surgery --- Image-Guided Surgeries --- Navigation, Surgical --- Surgeries, Computer-Aided --- Surgeries, Computer-Assisted --- Surgeries, Image-Guided --- Surgery, Computer Assisted --- Surgery, Computer-Aided --- Surgery, Image Guided --- Augmented Reality --- Image-Guided Biopsy --- Hybrid Imaging --- Imaging, Hybrid --- Imaging, Multimodal --- Image Processing, Computer-Assisted --- Analysis, Computer-Assisted Image --- Computer-Assisted Image Analysis --- Biomedical Image Processing --- Computer-Assisted Image Processing --- Digital Image Processing --- Image Analysis, Computer-Assisted --- Image Reconstruction --- Medical Image Processing --- Computer Assisted Image Analysis --- Computer Assisted Image Processing --- Computer-Assisted Image Analyses --- Image Analyses, Computer-Assisted --- Image Analysis, Computer Assisted --- Image Processing, Biomedical --- Image Processing, Computer Assisted --- Image Processing, Digital --- Image Processing, Medical --- Image Processings, Medical --- Image Reconstructions --- Medical Image Processings --- Processing, Biomedical Image --- Processing, Digital Image --- Processing, Medical Image --- Processings, Digital Image --- Processings, Medical Image --- Reconstruction, Image --- Reconstructions, Image --- Diagnostic Imaging --- Data Compression --- Multimodal Imaging --- Imaging, Diagnostic --- Imaging, Medical --- Medical Imaging --- Radiologic and Imaging Nursing --- drug therapy --- therapeutic use --- Radiology. --- Biotechnology. --- Artificial intelligence. --- Artificial Intelligence. --- AI (Artificial intelligence) --- Artificial thinking --- Electronic brains --- Intellectronics --- Intelligence, Artificial --- Intelligent machines --- Machine intelligence --- Thinking, Artificial --- Bionics --- Cognitive science --- Digital computer simulation --- Electronic data processing --- Logic machines --- Machine theory --- Self-organizing systems --- Simulation methods --- Fifth generation computers --- Neural computers --- Chemical engineering --- Genetic engineering --- Radiological physics --- Physics --- Radiation
Listing 1 - 5 of 5 |
Sort by
|