Narrow your search

Library

KU Leuven (4)

VUB (4)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UAntwerpen (3)

UCLouvain (3)

UCLL (3)

ULiège (3)

More...

Resource type

book (6)


Language

English (6)


Year
From To Submit

2014 (2)

2008 (1)

1981 (1)

1974 (1)

1971 (1)

Listing 1 - 6 of 6
Sort by
Advances in the theory of Riemann surfaces: proceedings of the 1969 Stony Brook Conference
Authors: --- --- --- ---
ISBN: 069108081X 9781400822492 1400822491 9780691080819 Year: 1971 Volume: 66 Publisher: Princeton, N.J. Princeton University Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

Intended for researchers in Riemann surfaces, this volume summarizes a significant portion of the work done in the field during the years 1966 to 1971.

Keywords

Riemann surfaces --- Mathematics --- Physical Sciences & Mathematics --- Calculus --- Surfaces, Riemann --- Functions --- Congresses --- Differential geometry. Global analysis --- RIEMANN SURFACES --- congresses --- Congresses. --- MATHEMATICS / Calculus. --- Affine space. --- Algebraic function field. --- Algebraic structure. --- Analytic continuation. --- Analytic function. --- Analytic set. --- Automorphic form. --- Automorphic function. --- Automorphism. --- Beltrami equation. --- Bernhard Riemann. --- Boundary (topology). --- Canonical basis. --- Cartesian product. --- Clifford's theorem. --- Cohomology. --- Commutative diagram. --- Commutative property. --- Complex multiplication. --- Conformal geometry. --- Conformal map. --- Coset. --- Degeneracy (mathematics). --- Diagram (category theory). --- Differential geometry of surfaces. --- Dimension (vector space). --- Dirichlet boundary condition. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Eisenstein series. --- Euclidean space. --- Existential quantification. --- Explicit formulae (L-function). --- Exterior (topology). --- Finsler manifold. --- Fourier series. --- Fuchsian group. --- Function (mathematics). --- Generating set of a group. --- Group (mathematics). --- Hilbert space. --- Holomorphic function. --- Homeomorphism. --- Homology (mathematics). --- Homotopy. --- Hyperbolic geometry. --- Hyperbolic group. --- Identity matrix. --- Infimum and supremum. --- Inner automorphism. --- Intersection (set theory). --- Intersection number (graph theory). --- Isometry. --- Isomorphism class. --- Isomorphism theorem. --- Kleinian group. --- Limit point. --- Limit set. --- Linear map. --- Lorentz group. --- Mapping class group. --- Mathematical induction. --- Mathematics. --- Matrix (mathematics). --- Matrix multiplication. --- Measure (mathematics). --- Meromorphic function. --- Metric space. --- Modular group. --- Möbius transformation. --- Number theory. --- Osgood curve. --- Parity (mathematics). --- Partial isometry. --- Poisson summation formula. --- Pole (complex analysis). --- Projective space. --- Quadratic differential. --- Quadratic form. --- Quasiconformal mapping. --- Quotient space (linear algebra). --- Quotient space (topology). --- Riemann mapping theorem. --- Riemann sphere. --- Riemann surface. --- Riemann zeta function. --- Scalar multiplication. --- Scientific notation. --- Selberg trace formula. --- Series expansion. --- Sign (mathematics). --- Square-integrable function. --- Subgroup. --- Teichmüller space. --- Theorem. --- Topological manifold. --- Topological space. --- Uniformization. --- Unit disk. --- Variable (mathematics). --- Riemann, Surfaces de --- RIEMANN SURFACES - congresses --- Fonctions d'une variable complexe --- Surfaces de riemann

Discontinuous groups and Riemann surfaces: proceedings of the 1973 Conference at the University of Maryland
Author:
ISBN: 0691081387 1400881641 9780691081380 Year: 1974 Volume: 79 Publisher: Princeton, N.J.

Loading...
Export citation

Choose an application

Bookmark

Abstract

Study 79 contains a collection of papers presented at the Conference on Discontinuous Groups and Ricmann Surfaces at the University of Maryland, May 21-25, 1973. The papers, by leading authorities, deal mainly with Fuchsian and Kleinian groups, Teichmüller spaces, Jacobian varieties, and quasiconformal mappings. These topics are intertwined, representing a common meeting of algebra, geometry, and analysis.

Keywords

Group theory --- Complex analysis --- Number theory --- RIEMANN SURFACES --- Discontinuous groups --- congresses --- Congresses --- Riemann surfaces --- Congresses. --- Groupes discontinus --- Combinatorial topology --- Functions of complex variables --- Surfaces, Riemann --- Functions --- Abelian variety. --- Adjunction (field theory). --- Affine space. --- Algebraic curve. --- Algebraic structure. --- Analytic function. --- Arithmetic genus. --- Automorphism. --- Bernhard Riemann. --- Boundary (topology). --- Cauchy sequence. --- Cauchy–Schwarz inequality. --- Cayley–Hamilton theorem. --- Closed geodesic. --- Combination. --- Commutative diagram. --- Commutator subgroup. --- Compact Riemann surface. --- Complex dimension. --- Complex manifold. --- Complex multiplication. --- Complex space. --- Complex torus. --- Congruence subgroup. --- Conjugacy class. --- Convex set. --- Cyclic group. --- Degeneracy (mathematics). --- Diagram (category theory). --- Diffeomorphism. --- Differential form. --- Dimension (vector space). --- Disjoint sets. --- E7 (mathematics). --- Endomorphism. --- Equation. --- Equivalence class. --- Euclidean space. --- Existence theorem. --- Existential quantification. --- Finite group. --- Finitely generated group. --- Fuchsian group. --- Fundamental domain. --- Fundamental lemma (Langlands program). --- Fundamental polygon. --- Galois extension. --- Holomorphic function. --- Homeomorphism. --- Homology (mathematics). --- Homomorphism. --- Hurwitz's theorem (number theory). --- Inclusion map. --- Inequality (mathematics). --- Inner automorphism. --- Intersection (set theory). --- Irreducibility (mathematics). --- Isomorphism class. --- Isomorphism theorem. --- Jacobian variety. --- Jordan curve theorem. --- Kleinian group. --- Limit point. --- Mapping class group. --- Metric space. --- Monodromy. --- Monomorphism. --- Möbius transformation. --- Non-Euclidean geometry. --- Orthogonal trajectory. --- Permutation. --- Polynomial. --- Power series. --- Projective variety. --- Quadratic differential. --- Quadric. --- Quasi-projective variety. --- Quasiconformal mapping. --- Quotient space (topology). --- Rectangle. --- Riemann mapping theorem. --- Riemann surface. --- Schwarzian derivative. --- Simply connected space. --- Simultaneous equations. --- Special case. --- Subgroup. --- Subsequence. --- Surjective function. --- Symmetric space. --- Tangent space. --- Teichmüller space. --- Theorem. --- Topological space. --- Topology. --- Uniqueness theorem. --- Unit disk. --- Variable (mathematics). --- Winding number. --- Word problem (mathematics). --- RIEMANN SURFACES - congresses --- Discontinuous groups - Congresses --- Geometrie algebrique --- Fonctions d'une variable complexe --- Surfaces de riemann

The Real Fatou Conjecture. (AM-144), Volume 144
Authors: ---
ISBN: 0691002576 1400865182 9781400865185 9780691002583 9780691002576 0691002584 9780691002583 Year: 2014 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

In 1920, Pierre Fatou expressed the conjecture that--except for special cases--all critical points of a rational map of the Riemann sphere tend to periodic orbits under iteration. This conjecture remains the main open problem in the dynamics of iterated maps. For the logistic family x- ax(1-x), it can be interpreted to mean that for a dense set of parameters "a," an attracting periodic orbit exists. The same question appears naturally in science, where the logistic family is used to construct models in physics, ecology, and economics. In this book, Jacek Graczyk and Grzegorz Swiatek provide a rigorous proof of the Real Fatou Conjecture. In spite of the apparently elementary nature of the problem, its solution requires advanced tools of complex analysis. The authors have written a self-contained and complete version of the argument, accessible to someone with no knowledge of complex dynamics and only basic familiarity with interval maps. The book will thus be useful to specialists in real dynamics as well as to graduate students.

Keywords

Geodesics (Mathematics) --- Polynomials. --- Mappings (Mathematics) --- Maps (Mathematics) --- Functions --- Functions, Continuous --- Topology --- Transformations (Mathematics) --- Algebra --- Geometry, Differential --- Global analysis (Mathematics) --- Mathematics --- Absolute value. --- Affine transformation. --- Algebraic function. --- Analytic continuation. --- Analytic function. --- Arithmetic. --- Automorphism. --- Big O notation. --- Bounded set (topological vector space). --- C0. --- Calculation. --- Canonical map. --- Change of variables. --- Chebyshev polynomials. --- Combinatorics. --- Commutative property. --- Complex number. --- Complex plane. --- Complex quadratic polynomial. --- Conformal map. --- Conjecture. --- Conjugacy class. --- Conjugate points. --- Connected component (graph theory). --- Connected space. --- Continuous function. --- Corollary. --- Covering space. --- Critical point (mathematics). --- Dense set. --- Derivative. --- Diffeomorphism. --- Dimension. --- Disjoint sets. --- Disjoint union. --- Disk (mathematics). --- Equicontinuity. --- Estimation. --- Existential quantification. --- Fibonacci. --- Functional equation. --- Fundamental domain. --- Generalization. --- Great-circle distance. --- Hausdorff distance. --- Holomorphic function. --- Homeomorphism. --- Homotopy. --- Hyperbolic function. --- Imaginary number. --- Implicit function theorem. --- Injective function. --- Integer. --- Intermediate value theorem. --- Interval (mathematics). --- Inverse function. --- Irreducible polynomial. --- Iteration. --- Jordan curve theorem. --- Julia set. --- Limit of a sequence. --- Linear map. --- Local diffeomorphism. --- Mathematical induction. --- Mathematical proof. --- Maxima and minima. --- Meromorphic function. --- Moduli (physics). --- Monomial. --- Monotonic function. --- Natural number. --- Neighbourhood (mathematics). --- Open set. --- Parameter. --- Periodic function. --- Periodic point. --- Phase space. --- Point at infinity. --- Polynomial. --- Projection (mathematics). --- Quadratic function. --- Quadratic. --- Quasiconformal mapping. --- Renormalization. --- Riemann sphere. --- Riemann surface. --- Schwarzian derivative. --- Scientific notation. --- Subsequence. --- Theorem. --- Theory. --- Topological conjugacy. --- Topological entropy. --- Topology. --- Union (set theory). --- Unit circle. --- Unit disk. --- Upper and lower bounds. --- Upper half-plane. --- Z0.

Riemann surfaces and related topics : proceedings of the 1978 Stony Brook conference
Authors: ---
ISBN: 0691082642 0691082677 1400881552 Year: 1981 Publisher: Princeton (N.J.): Princeton university press

Loading...
Export citation

Choose an application

Bookmark

Abstract

The description for this book, Riemann Surfaces Related Topics (AM-97), Volume 97: Proceedings of the 1978 Stony Brook Conference. (AM-97), will be forthcoming.

Keywords

Geometry --- Riemann surfaces --- -517.54 --- Surfaces, Riemann --- Functions --- Congresses --- Conformal mapping and geometric problems in the theory of functions of a complex variable. Analytic functions and their generalizations --- 517.54 Conformal mapping and geometric problems in the theory of functions of a complex variable. Analytic functions and their generalizations --- 517.54 --- Riemann, Surfaces de --- Abstract simplicial complex. --- Affine transformation. --- Algebraic curve. --- Algebraic element. --- Algebraic equation. --- Algebraic surface. --- Analytic function. --- Analytic torsion. --- Automorphic form. --- Automorphic function. --- Automorphism. --- Banach space. --- Basis (linear algebra). --- Boundary (topology). --- Bounded set (topological vector space). --- Cohomology ring. --- Cohomology. --- Commutative property. --- Commutator subgroup. --- Compact Riemann surface. --- Complex analysis. --- Complex manifold. --- Conformal geometry. --- Conformal map. --- Conjugacy class. --- Covering space. --- Diagram (category theory). --- Dimension (vector space). --- Divisor (algebraic geometry). --- Divisor. --- Eigenvalues and eigenvectors. --- Equivalence class. --- Equivalence relation. --- Ergodic theory. --- Existential quantification. --- Foliation. --- Fuchsian group. --- Fundamental domain. --- Fundamental group. --- Fundamental polygon. --- Geodesic. --- Geometric function theory. --- Group homomorphism. --- H-cobordism. --- Hausdorff measure. --- Holomorphic function. --- Homeomorphism. --- Homomorphism. --- Homotopy. --- Hyperbolic 3-manifold. --- Hyperbolic manifold. --- Hyperbolic space. --- Infimum and supremum. --- Injective module. --- Interior (topology). --- Intersection form (4-manifold). --- Isometry. --- Isomorphism class. --- Jordan curve theorem. --- Kleinian group. --- Kähler manifold. --- Limit point. --- Limit set. --- Manifold. --- Meromorphic function. --- Metric space. --- Mostow rigidity theorem. --- Möbius transformation. --- Poincaré conjecture. --- Pole (complex analysis). --- Polynomial. --- Product topology. --- Projective variety. --- Quadratic differential. --- Quasi-isometry. --- Quasiconformal mapping. --- Quotient space (topology). --- Radon–Nikodym theorem. --- Ricci curvature. --- Riemann mapping theorem. --- Riemann sphere. --- Riemann surface. --- Riemannian geometry. --- Riemannian manifold. --- Schwarzian derivative. --- Strictly convex space. --- Subgroup. --- Submanifold. --- Surjective function. --- Tangent space. --- Teichmüller space. --- Theorem. --- Topological conjugacy. --- Topological space. --- Topology. --- Uniformization theorem. --- Uniformization. --- Uniqueness theorem. --- Unit disk. --- Vector bundle.

Renormalization and 3-Manifolds Which Fiber over the Circle (AM-142), Volume 142
Author:
ISBN: 0691011540 1400865174 9781400865178 9780691011530 0691011532 9780691011547 Year: 2014 Volume: 142 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quantitative proof of convergence of renormalization.

Keywords

Differential dynamical systems --- Drie-menigvuldigheden (Topologie) --- Three-manifolds (Topology) --- Trois-variétés (Topologie) --- Differentiable dynamical systems. --- Dynamical systems, Differentiable --- Dynamics, Differentiable --- 3-manifolds (Topology) --- Manifolds, Three dimensional (Topology) --- Three-dimensional manifolds (Topology) --- Differential equations --- Global analysis (Mathematics) --- Topological dynamics --- Low-dimensional topology --- Topological manifolds --- Algebraic topology. --- Analytic continuation. --- Automorphism. --- Beltrami equation. --- Bifurcation theory. --- Boundary (topology). --- Cantor set. --- Circular symmetry. --- Combinatorics. --- Compact space. --- Complex conjugate. --- Complex manifold. --- Complex number. --- Complex plane. --- Conformal geometry. --- Conformal map. --- Conjugacy class. --- Convex hull. --- Covering space. --- Deformation theory. --- Degeneracy (mathematics). --- Dimension (vector space). --- Disk (mathematics). --- Dynamical system. --- Eigenvalues and eigenvectors. --- Factorization. --- Fiber bundle. --- Fuchsian group. --- Fundamental domain. --- Fundamental group. --- Fundamental solution. --- G-module. --- Geodesic. --- Geometry. --- Harmonic analysis. --- Hausdorff dimension. --- Homeomorphism. --- Homotopy. --- Hyperbolic 3-manifold. --- Hyperbolic geometry. --- Hyperbolic manifold. --- Hyperbolic space. --- Hypersurface. --- Infimum and supremum. --- Injective function. --- Intersection (set theory). --- Invariant subspace. --- Isometry. --- Julia set. --- Kleinian group. --- Laplace's equation. --- Lebesgue measure. --- Lie algebra. --- Limit point. --- Limit set. --- Linear map. --- Mandelbrot set. --- Manifold. --- Mapping class group. --- Measure (mathematics). --- Moduli (physics). --- Moduli space. --- Modulus of continuity. --- Möbius transformation. --- N-sphere. --- Newton's method. --- Permutation. --- Point at infinity. --- Polynomial. --- Quadratic function. --- Quasi-isometry. --- Quasiconformal mapping. --- Quasisymmetric function. --- Quotient space (topology). --- Radon–Nikodym theorem. --- Renormalization. --- Representation of a Lie group. --- Representation theory. --- Riemann sphere. --- Riemann surface. --- Riemannian manifold. --- Schwarz lemma. --- Simply connected space. --- Special case. --- Submanifold. --- Subsequence. --- Support (mathematics). --- Tangent space. --- Teichmüller space. --- Theorem. --- Topology of uniform convergence. --- Topology. --- Trace (linear algebra). --- Transversal (geometry). --- Transversality (mathematics). --- Triangle inequality. --- Unit disk. --- Unit sphere. --- Upper and lower bounds. --- Vector field. --- Differentiable dynamical systems --- 515.16 --- 515.16 Topology of manifolds --- Topology of manifolds


Book
Elliptic Partial Differential Equations and Quasiconformal Mappings in the Plane (PMS-48)
Authors: --- ---
ISBN: 1282157272 9786612157271 1400830117 9781400830114 9780691137773 0691137773 9781282157279 6612157275 Year: 2008 Publisher: Princeton, NJ

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.

Keywords

Differential equations, Elliptic. --- Quasiconformal mappings. --- Mappings, Quasiconformal --- Conformal mapping --- Functions of complex variables --- Geometric function theory --- Mappings (Mathematics) --- Elliptic differential equations --- Elliptic partial differential equations --- Linear elliptic differential equations --- Differential equations, Linear --- Differential equations, Partial --- Adjoint equation. --- Analytic function. --- Analytic proof. --- Banach space. --- Beltrami equation. --- Boundary value problem. --- Bounded mean oscillation. --- Calculus of variations. --- Cantor function. --- Cartesian product. --- Cauchy–Riemann equations. --- Central limit theorem. --- Characterization (mathematics). --- Complex analysis. --- Complex plane. --- Conformal geometry. --- Conformal map. --- Conjugate variables. --- Continuous function (set theory). --- Coordinate space. --- Degeneracy (mathematics). --- Differential equation. --- Directional derivative. --- Dirichlet integral. --- Dirichlet problem. --- Disk (mathematics). --- Distribution (mathematics). --- Elliptic operator. --- Elliptic partial differential equation. --- Equation. --- Equations of motion. --- Euler–Lagrange equation. --- Explicit formulae (L-function). --- Factorization. --- Fourier transform. --- Fubini's theorem. --- Geometric function theory. --- Geometric measure theory. --- Geometry. --- Harmonic conjugate. --- Harmonic function. --- Harmonic map. --- Harmonic measure. --- Hilbert transform. --- Holomorphic function. --- Homeomorphism. --- Hyperbolic geometry. --- Hyperbolic trigonometry. --- Invertible matrix. --- Jacobian matrix and determinant. --- Julia set. --- Lagrangian (field theory). --- Laplace's equation. --- Limit (mathematics). --- Linear differential equation. --- Linear equation. --- Linear fractional transformation. --- Linear map. --- Linearization. --- Lipschitz continuity. --- Locally integrable function. --- Lusin's theorem. --- Mathematical optimization. --- Mathematics. --- Maxima and minima. --- Maxwell's equations. --- Measure (mathematics). --- Metric space. --- Mirror symmetry (string theory). --- Moduli space. --- Modulus of continuity. --- Monodromy theorem. --- Monotonic function. --- Montel's theorem. --- Operator (physics). --- Operator theory. --- Partial derivative. --- Partial differential equation. --- Poisson formula. --- Polynomial. --- Quadratic function. --- Quasiconformal mapping. --- Quasiconvex function. --- Quasisymmetric function. --- Renormalization. --- Riemann sphere. --- Riemann surface. --- Riemannian geometry. --- Riesz transform. --- Riesz–Thorin theorem. --- Sign (mathematics). --- Sobolev space. --- Square-integrable function. --- Support (mathematics). --- Theorem. --- Two-dimensional space. --- Uniformization theorem. --- Upper half-plane. --- Variable (mathematics). --- Weyl's lemma (Laplace equation).

Listing 1 - 6 of 6
Sort by