Listing 1 - 10 of 30 | << page >> |
Sort by
|
Choose an application
Power converters have progressively become the most efficient and attractive solution in recent decades in many industrial sectors, ranging from electric mobility, aerospace applications to attain better electric aircraft concepts, vast renewable energy resource integration in the transmission and distribution grid, the design of smart and efficient energy management systems, the usage of energy storage systems, and the achievement of smart grid paradigm development, among others.In order to achieve efficient solutions in this wide energy scenario, over the past few decades, considerable attention has been paid by the academia and industry in order to develop new methods to achieve power systems with maximum harmonic performance aiming for two main targets. On the one hand, the high-performance harmonic performance of power systems would lead to improvements in their power density, size and weight. This becomes critical in applications such as aerospace or electric mobility, where the power converters are on-board systems. On the other hand, current standards are becoming more and more strict in order to reduce the EMI and EMC noise, as well as meeting minimum power quality requirements (i.e., grid code standards for grid-tied power systems).
multiphase drives --- pulse width modulation --- current harmonics --- effective voltage regulation --- generalized delayed signal cancellation --- harmonic distortion --- power quality --- repetitive controller --- harmonic analysis --- power converters --- pulse-width modulation (PWM) --- frequency-domain model --- voltage-source inverter (VSI) --- closed-loop control --- full electric aircraft (FEA) --- cascaded H-bridge (CHB) --- multi-level inverter --- permanent magnet synchronous motor (PMSM) --- total harmonic distortion (THD) --- pulse-width modulation --- metaheuristic search algorithms
Choose an application
Power converters have progressively become the most efficient and attractive solution in recent decades in many industrial sectors, ranging from electric mobility, aerospace applications to attain better electric aircraft concepts, vast renewable energy resource integration in the transmission and distribution grid, the design of smart and efficient energy management systems, the usage of energy storage systems, and the achievement of smart grid paradigm development, among others.In order to achieve efficient solutions in this wide energy scenario, over the past few decades, considerable attention has been paid by the academia and industry in order to develop new methods to achieve power systems with maximum harmonic performance aiming for two main targets. On the one hand, the high-performance harmonic performance of power systems would lead to improvements in their power density, size and weight. This becomes critical in applications such as aerospace or electric mobility, where the power converters are on-board systems. On the other hand, current standards are becoming more and more strict in order to reduce the EMI and EMC noise, as well as meeting minimum power quality requirements (i.e., grid code standards for grid-tied power systems).
Technology: general issues --- Energy industries & utilities --- multiphase drives --- pulse width modulation --- current harmonics --- effective voltage regulation --- generalized delayed signal cancellation --- harmonic distortion --- power quality --- repetitive controller --- harmonic analysis --- power converters --- pulse-width modulation (PWM) --- frequency-domain model --- voltage-source inverter (VSI) --- closed-loop control --- full electric aircraft (FEA) --- cascaded H-bridge (CHB) --- multi-level inverter --- permanent magnet synchronous motor (PMSM) --- total harmonic distortion (THD) --- pulse-width modulation --- metaheuristic search algorithms --- multiphase drives --- pulse width modulation --- current harmonics --- effective voltage regulation --- generalized delayed signal cancellation --- harmonic distortion --- power quality --- repetitive controller --- harmonic analysis --- power converters --- pulse-width modulation (PWM) --- frequency-domain model --- voltage-source inverter (VSI) --- closed-loop control --- full electric aircraft (FEA) --- cascaded H-bridge (CHB) --- multi-level inverter --- permanent magnet synchronous motor (PMSM) --- total harmonic distortion (THD) --- pulse-width modulation --- metaheuristic search algorithms
Choose an application
Power converters have progressively become the most efficient and attractive solution in recent decades in many industrial sectors, ranging from electric mobility, aerospace applications to attain better electric aircraft concepts, vast renewable energy resource integration in the transmission and distribution grid, the design of smart and efficient energy management systems, the usage of energy storage systems, and the achievement of smart grid paradigm development, among others.In order to achieve efficient solutions in this wide energy scenario, over the past few decades, considerable attention has been paid by the academia and industry in order to develop new methods to achieve power systems with maximum harmonic performance aiming for two main targets. On the one hand, the high-performance harmonic performance of power systems would lead to improvements in their power density, size and weight. This becomes critical in applications such as aerospace or electric mobility, where the power converters are on-board systems. On the other hand, current standards are becoming more and more strict in order to reduce the EMI and EMC noise, as well as meeting minimum power quality requirements (i.e., grid code standards for grid-tied power systems).
Technology: general issues --- Energy industries & utilities --- multiphase drives --- pulse width modulation --- current harmonics --- effective voltage regulation --- generalized delayed signal cancellation --- harmonic distortion --- power quality --- repetitive controller --- harmonic analysis --- power converters --- pulse-width modulation (PWM) --- frequency-domain model --- voltage-source inverter (VSI) --- closed-loop control --- full electric aircraft (FEA) --- cascaded H-bridge (CHB) --- multi-level inverter --- permanent magnet synchronous motor (PMSM) --- total harmonic distortion (THD) --- pulse-width modulation --- metaheuristic search algorithms
Choose an application
This book covers several research items related to LLC resonant converters, which were published in a Special Issue of Energies on the subject area of "Advances in High-Efficiency LLC Resonant converter". It focuses on emerging power electronic topologies related to the LLC resonant converter, and its design methodology and control algorithms. Topics of interest include LLC resonant topologies, resonant tank design methodology for high efficiency, power loss analysis in LLC resonant converters, high-frequency magnetics for resonant converters, wide band-gap devices applied to LLC resonant converter, and advanced control algorithm for LLC resonant converter.
History of engineering & technology --- resonant converter --- bidirectional power conversion --- zero voltage switching --- asymmetric pulse width modulation --- LLC resonant converter --- integrated transformer --- adjustable leakage inductance --- LED driver --- aircraft power conversion --- LLC resonant converters --- high efficiency --- ZVS auxiliary circuit --- dual output converter --- pulse frequency modulation (PFM) --- asymmetric pulse width modulation (APWM) --- control --- current mode control --- voltage control --- transfer function --- power converter --- soft-switching converter --- battery charging --- PV micro-inverter --- LLC converter --- high switching frequency --- transformer loss --- center-tapped transformer --- flux walking --- flux-balance control loop --- magnetizing current estimation --- LLC Converter --- Duty Control --- Extended Describing Function --- Small Signal Modeling --- solid-state-transformer (SST) --- isolation dc-dc converter --- series-connected devices
Choose an application
This book covers several research items related to LLC resonant converters, which were published in a Special Issue of Energies on the subject area of "Advances in High-Efficiency LLC Resonant converter". It focuses on emerging power electronic topologies related to the LLC resonant converter, and its design methodology and control algorithms. Topics of interest include LLC resonant topologies, resonant tank design methodology for high efficiency, power loss analysis in LLC resonant converters, high-frequency magnetics for resonant converters, wide band-gap devices applied to LLC resonant converter, and advanced control algorithm for LLC resonant converter.
resonant converter --- bidirectional power conversion --- zero voltage switching --- asymmetric pulse width modulation --- LLC resonant converter --- integrated transformer --- adjustable leakage inductance --- LED driver --- aircraft power conversion --- LLC resonant converters --- high efficiency --- ZVS auxiliary circuit --- dual output converter --- pulse frequency modulation (PFM) --- asymmetric pulse width modulation (APWM) --- control --- current mode control --- voltage control --- transfer function --- power converter --- soft-switching converter --- battery charging --- PV micro-inverter --- LLC converter --- high switching frequency --- transformer loss --- center-tapped transformer --- flux walking --- flux-balance control loop --- magnetizing current estimation --- LLC Converter --- Duty Control --- Extended Describing Function --- Small Signal Modeling --- solid-state-transformer (SST) --- isolation dc-dc converter --- series-connected devices
Choose an application
This book offers a general approach to pulse width modulation techniques and multilevel inverter topologies. The multilevel inverters can be approximately compared to a sinusoidal waveform because of their increased number of direct current voltage levels, which provides an opportunity to eliminate harmonic contents and therefore allows the utilization of smaller and more reliable components. On the other side, multilevel inverters require more components than traditional inverters and that increases the overall cost of the system. The various algorithms for multilevel neutral point clamped inverter fed induction motor are proposed and implemented, and the results are analyzed. The performance of these algorithms is evaluated in terms of inverter output voltage, current waveforms and total harmonic distortion. Various basic pulse width modulation techniques, features and implementation of space vector pulse width modulation for a two-level inverter, and various multilevel inverter topologies are discussed in detail. This book is extremely useful for undergraduate students, postgraduate students, industry people, scientists of research laboratories and especially for the research scholars who are working in the area of multilevel inverters. Dr. Satish Kumar Peddapelli is Assistant Professor at the Osmania University in Hyderabad, India. His areas of interest are Power Electronics, Drives, Power Converters, Multi Level Inverters and Special Machines.
Electric motors, Induction. --- Pulse-duration modulation. --- Pulse frequency modulation. --- Frequency modulation, Pulse --- Electronic data processing --- Error-correcting codes (Information theory) --- Pulse-code modulation --- Pulse techniques (Electronics) --- Pulse-length modulation --- Pulse-width modulation --- Pulse modulation (Electronics) --- Asynchronous electric motors --- Electric motors, Asynchronous --- Induction motors --- Electric machinery, Induction --- Electric motors, Alternating current --- Electric motors, Brushless
Choose an application
This book is a technical publication for students, scholars and engineers in electrical engineering, focusing on the pulse-width-modulation (PWM) technologies in power electronics area. Based on an introduction of basic PWM principles this book analyzes three major challenges for PWM on system performance: power losses, voltage/current ripple and electromagnetic interference (EMI) noise, and the lack of utilization of control freedoms in conventional PWM technologies. Then, the model of PWM's impact on system performance is introduced, with the current ripple prediction method for voltage source converter as example. With the prediction model, two major advanced PWM methods are introduced: variable switching frequency PWM and phase-shift PWM, which can reduce the power losses and EMI for the system based on the prediction model. Furthermore, the advanced PWM can be applied in advanced topologies including multilevel converters and paralleled converters. With more control variables in the advanced topologies, performance of PWM can be further improved. Also, for the special problem for common-mode noise, this book introduces modified PWM method for reduction. Especially, the paralleled inverters with advanced PWM can achieve good performance for the common-mode noise reduction. Finally, the implementation of PWM technologies in hardware is introduced in the last part.
Power electronics. --- Electronic circuits. --- Electronics. --- Microelectronics. --- Energy systems. --- Power Electronics, Electrical Machines and Networks. --- Circuits and Systems. --- Electronics and Microelectronics, Instrumentation. --- Energy Systems. --- Microminiature electronic equipment --- Microminiaturization (Electronics) --- Electronics --- Microtechnology --- Semiconductors --- Miniature electronic equipment --- Electrical engineering --- Physical sciences --- Electron-tube circuits --- Electric circuits --- Electron tubes --- Electronics, Power --- Electric power --- Pulse-duration modulation. --- Pulse-length modulation --- Pulse-width modulation --- Pulse modulation (Electronics)
Choose an application
This book covers several research items related to LLC resonant converters, which were published in a Special Issue of Energies on the subject area of "Advances in High-Efficiency LLC Resonant converter". It focuses on emerging power electronic topologies related to the LLC resonant converter, and its design methodology and control algorithms. Topics of interest include LLC resonant topologies, resonant tank design methodology for high efficiency, power loss analysis in LLC resonant converters, high-frequency magnetics for resonant converters, wide band-gap devices applied to LLC resonant converter, and advanced control algorithm for LLC resonant converter.
History of engineering & technology --- resonant converter --- bidirectional power conversion --- zero voltage switching --- asymmetric pulse width modulation --- LLC resonant converter --- integrated transformer --- adjustable leakage inductance --- LED driver --- aircraft power conversion --- LLC resonant converters --- high efficiency --- ZVS auxiliary circuit --- dual output converter --- pulse frequency modulation (PFM) --- asymmetric pulse width modulation (APWM) --- control --- current mode control --- voltage control --- transfer function --- power converter --- soft-switching converter --- battery charging --- PV micro-inverter --- LLC converter --- high switching frequency --- transformer loss --- center-tapped transformer --- flux walking --- flux-balance control loop --- magnetizing current estimation --- LLC Converter --- Duty Control --- Extended Describing Function --- Small Signal Modeling --- solid-state-transformer (SST) --- isolation dc-dc converter --- series-connected devices --- resonant converter --- bidirectional power conversion --- zero voltage switching --- asymmetric pulse width modulation --- LLC resonant converter --- integrated transformer --- adjustable leakage inductance --- LED driver --- aircraft power conversion --- LLC resonant converters --- high efficiency --- ZVS auxiliary circuit --- dual output converter --- pulse frequency modulation (PFM) --- asymmetric pulse width modulation (APWM) --- control --- current mode control --- voltage control --- transfer function --- power converter --- soft-switching converter --- battery charging --- PV micro-inverter --- LLC converter --- high switching frequency --- transformer loss --- center-tapped transformer --- flux walking --- flux-balance control loop --- magnetizing current estimation --- LLC Converter --- Duty Control --- Extended Describing Function --- Small Signal Modeling --- solid-state-transformer (SST) --- isolation dc-dc converter --- series-connected devices
Choose an application
With the growing interest in electrical machines in recent times, the multiphase machine field has developed into a fascinating research area. Their intrinsic features (power splitting, better fault tolerance, or lower torque ripple) make them an appealing competitor to conventional three-phase machines. Multiphase electric drives have been recently used in applications where fault tolerance and continuous operation of the drive are required. However, the difficulties in extending the three-phase conventional current regulation and control structure to multiphase systems still limit their broad applicability in industry solutions. The main objective of this book is to illustrate new advances, developments, and applications in the field of multiphase machines and drives, while exposing these advances, developments, and applications to the scientific community and industry.
model predictive control --- sliding mode control --- multiphase induction motor drives --- multiphase induction machine --- winding configuration --- observer --- meta-heuristic algorithms --- cost functions --- off-line identification methods --- constraints satisfaction --- multiphase drives --- multi-phase drives --- natural fault tolerance --- current control --- variable sampling --- harmonic distortion --- minmax --- electric drives --- field-oriented control --- time delay estimation --- predictive current control --- modelling --- pulse width modulation --- multiphase induction machines --- fixed switching frequency --- local controllers --- current ripple --- dc-ac power converters --- virtual voltage vectors --- high-frequency losses
Choose an application
This Special Issue aims to examine high-density solid-state memory devices and technologies from various standpoints in an attempt to foster their continuous success in the future. Considering that broadening of the range of applications will likely offer different types of solid-state memories their chance in the spotlight, the Special Issue is not focused on a specific storage solution but rather embraces all the most relevant solid-state memory devices and technologies currently on stage. Even the subjects dealt with in this Special Issue are widespread, ranging from process and design issues/innovations to the experimental and theoretical analysis of the operation and from the performance and reliability of memory devices and arrays to the exploitation of solid-state memories to pursue new computing paradigms.
Technology: general issues --- History of engineering & technology --- resistive switching memory --- in-memory computing --- crosspoint array --- artificial intelligence --- deep learning --- dielectric --- RTN --- TAT --- Wiener–Khinchin --- transient analysis --- phonon --- surface roughness --- spectral index --- power spectrum --- program suspend --- 3D NAND Flash --- Solid State Drives --- MOSFET --- low-frequency noise --- random telegraph noise --- evaluation method --- array test pattern --- STT-MRAM --- spintronics --- CoFeB --- composite free layer --- low power electronics --- NAND Flash memory --- endurance --- reliability --- oxide trapped charge --- artificial neural networks --- neuromorphic computing --- NOR Flash memory arrays --- program noise --- pulse-width modulation --- 3D NAND --- floating gate cell --- charge-trap cell --- CMOS under array --- bumpless --- TSV --- WOW --- COW --- BBCube --- bandwidth --- yield --- power consumption --- thermal management --- n/a --- Wiener-Khinchin
Listing 1 - 10 of 30 | << page >> |
Sort by
|