Listing 1 - 7 of 7 |
Sort by
|
Choose an application
beta-Endorphin --- Skin --- Pro-Opiomelanocortin --- Gene Expression Regulation --- metabolism --- chemistry
Choose an application
Proopiomelanocortin --- Skin --- Skin Physiology --- Neuroimmunomodulation --- Pro-Opiomelanocortin --- Receptors, Corticotropin --- Skin Diseases --- Immunology --- physiology --- immunology --- Congresses
Choose an application
Proefschriften --- Thèses --- Academic collection --- Theses --- Proopiomelanocortin --- POMC (Hormone) --- Pro-opiocortin --- Pro-opiomelanocortin --- Proopiocortin --- Pituitary hormones
Choose an application
It is clear that the melanocortins are of immense academic interest. Further, these molecules have remarkable potential as pharmaceutical agents for treatment of multiple human and veterinary disorders and diseases. The evidence to support academic interest and clinical applications lies in significant part within the chapters of this book, chapters written by noted experts in the field who have worked diligently to understand the molecules and to move them toward clinical applications. I personally believe that the - MSH molecule and its derivatives will be used as routine therapeutics in the very near future. My belief is so strong that I left academia to form a company based on -MSH analogs and have caused millions of dollars to be spent on melanocortin research. Now why would a sane professor pick up such a challenge and enter business, an essential step toward any clinical application? It is the - MSH story that drove me. Consider that - MSH occurs in exactly the same amino acid sequence in humans and in the sea lamprey, an organism unchanged since its appearance during the Pennsylvanian period of the Paleozoic era (about 300 million years ago—way before dinosaurs were to be considered). There is unpublished evidence that the stability of the molecule can be traced back a half billion years. Frankly, I believe that the molecule existed even when single cells began to live together.
MSH (Hormone). --- MSH (Hormone) --- Pro-Opiomelanocortin --- Receptors, Corticotropin --- Biological Science Disciplines --- Metabolic Phenomena --- Receptors, G-Protein-Coupled --- Receptors, Neuropeptide --- Hypothalamic Hormones --- Receptors, Pituitary Hormone --- Natural Science Disciplines --- Pituitary Hormones, Anterior --- Receptors, Cell Surface --- Phenomena and Processes --- Neuropeptides --- Receptors, Neurotransmitter --- Receptors, Peptide --- Disciplines and Occupations --- Pituitary Hormones --- Membrane Proteins --- Peptide Hormones --- Nerve Tissue Proteins --- Proteins --- Hormones --- Peptides --- Amino Acids, Peptides, and Proteins --- Hormones, Hormone Substitutes, and Hormone Antagonists --- Receptors, Melanocortin --- Melanocortins --- Metabolism --- Physiology --- Chemicals and Drugs --- Human Anatomy & Physiology --- Health & Biological Sciences --- Animal Biochemistry --- Intermedin --- Melanocortin --- Melanocyte stimulating hormone --- Melanotropin --- Medicine. --- Biomedicine. --- Biomedicine general. --- Clinical sciences --- Medical profession --- Human biology --- Life sciences --- Medical sciences --- Pathology --- Physicians --- Peptide hormones --- Proopiomelanocortin --- Health Workforce --- Biomedicine, general.
Choose an application
The control of energy metabolism is a central event for cell, organ, and organism survival. There are many control levels in energy metabolism, although in this Special Issue, we concentrated on the neuroendocrine control which is operated through specialized neural circuits controlling both food intake and energy expenditure. Due to the explosion of obesity and associated diseases, the subject of this Special Issue is of particular interest today.
Medicine --- Neurosciences --- IGF1 --- IGF2 --- IGFBP2 --- high-fat diet --- obesity --- sex differences --- neuropeptides --- beige adipocyte --- white adipocyte --- brown adipocyte --- diabetes mellitus --- differentiation --- kisspeptin --- AgRP --- sheep --- reproduction --- LH --- genistein --- proopiomelanocortin --- arcuate nucleus --- rats --- endocrine disrupting chemicals --- bisphenol A --- diethylstilbestrol --- tributyltin --- neuropeptide Y --- pro-opiomelanocortin --- phytoestrogens --- endocrine disruptor --- dimorphism --- POMC --- orexin --- subfornical organ --- organum vasculosum of the lamina terminalis --- area postrema --- hypothalamus --- metabolism --- diabetes --- estrogens --- gut permeability/integrity --- insulin sensitivity --- Akkermansia --- gut microbiome --- lactate --- glycogen --- behavior --- learning --- astrocytes --- calcium signaling --- energy balance --- gliotransmission --- systemic metabolism --- amygdala --- kisspeptins --- food intake --- body weight --- intrauterine growth restriction --- macrosomia --- glucose tolerance --- abdominal adipocyte gene expression --- thrifty phenotype hypothesis
Choose an application
The control of energy metabolism is a central event for cell, organ, and organism survival. There are many control levels in energy metabolism, although in this Special Issue, we concentrated on the neuroendocrine control which is operated through specialized neural circuits controlling both food intake and energy expenditure. Due to the explosion of obesity and associated diseases, the subject of this Special Issue is of particular interest today.
IGF1 --- IGF2 --- IGFBP2 --- high-fat diet --- obesity --- sex differences --- neuropeptides --- beige adipocyte --- white adipocyte --- brown adipocyte --- diabetes mellitus --- differentiation --- kisspeptin --- AgRP --- sheep --- reproduction --- LH --- genistein --- proopiomelanocortin --- arcuate nucleus --- rats --- endocrine disrupting chemicals --- bisphenol A --- diethylstilbestrol --- tributyltin --- neuropeptide Y --- pro-opiomelanocortin --- phytoestrogens --- endocrine disruptor --- dimorphism --- POMC --- orexin --- subfornical organ --- organum vasculosum of the lamina terminalis --- area postrema --- hypothalamus --- metabolism --- diabetes --- estrogens --- gut permeability/integrity --- insulin sensitivity --- Akkermansia --- gut microbiome --- lactate --- glycogen --- behavior --- learning --- astrocytes --- calcium signaling --- energy balance --- gliotransmission --- systemic metabolism --- amygdala --- kisspeptins --- food intake --- body weight --- intrauterine growth restriction --- macrosomia --- glucose tolerance --- abdominal adipocyte gene expression --- thrifty phenotype hypothesis
Choose an application
The control of energy metabolism is a central event for cell, organ, and organism survival. There are many control levels in energy metabolism, although in this Special Issue, we concentrated on the neuroendocrine control which is operated through specialized neural circuits controlling both food intake and energy expenditure. Due to the explosion of obesity and associated diseases, the subject of this Special Issue is of particular interest today.
Medicine --- Neurosciences --- IGF1 --- IGF2 --- IGFBP2 --- high-fat diet --- obesity --- sex differences --- neuropeptides --- beige adipocyte --- white adipocyte --- brown adipocyte --- diabetes mellitus --- differentiation --- kisspeptin --- AgRP --- sheep --- reproduction --- LH --- genistein --- proopiomelanocortin --- arcuate nucleus --- rats --- endocrine disrupting chemicals --- bisphenol A --- diethylstilbestrol --- tributyltin --- neuropeptide Y --- pro-opiomelanocortin --- phytoestrogens --- endocrine disruptor --- dimorphism --- POMC --- orexin --- subfornical organ --- organum vasculosum of the lamina terminalis --- area postrema --- hypothalamus --- metabolism --- diabetes --- estrogens --- gut permeability/integrity --- insulin sensitivity --- Akkermansia --- gut microbiome --- lactate --- glycogen --- behavior --- learning --- astrocytes --- calcium signaling --- energy balance --- gliotransmission --- systemic metabolism --- amygdala --- kisspeptins --- food intake --- body weight --- intrauterine growth restriction --- macrosomia --- glucose tolerance --- abdominal adipocyte gene expression --- thrifty phenotype hypothesis
Listing 1 - 7 of 7 |
Sort by
|