Listing 1 - 2 of 2 |
Sort by
|
Choose an application
This book develops arithmetic without the induction principle, working in theories that are interpretable in Raphael Robinson's theory Q. Certain inductive formulas, the bounded ones, are interpretable in Q. A mathematically strong, but logically very weak, predicative arithmetic is constructed.Originally published in 1986.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Constructive mathematics. --- Arithmetic. --- Mathematics --- Set theory --- Calculators --- Numbers, Real --- Mathematics, Constructive --- Logic, Symbolic and mathematical --- Addition. --- Adjunction (field theory). --- Age of the universe. --- Almost surely. --- Arithmetic IF. --- Atomic formula. --- Axiom. --- Axiomatic system. --- Beta function. --- Big O notation. --- Binary number. --- Binary relation. --- Brownian motion. --- Canonical form. --- Cardinality. --- Cartesian coordinate system. --- Chessboard. --- Classical mathematics. --- Closed-form expression. --- Commutative property. --- Computation. --- Conservative extension. --- Consistency. --- Contradiction. --- Deduction theorem. --- Diameter. --- Direct proof. --- Domain of discourse. --- Elementary mathematics. --- Elias M. Stein. --- Existential quantification. --- Exponential function. --- Exponentiation. --- Extension by definitions. --- Finitary. --- Finite set. --- Formula C (SCCA). --- Foundations of mathematics. --- Fundamenta Mathematicae. --- Gödel's completeness theorem. --- Herbrand's theorem. --- Impredicativity. --- Inaccessible cardinal. --- Inference. --- Interpretability. --- John Milnor. --- Logic. --- Logical connective. --- Mathematical induction. --- Mathematical logic. --- Mathematician. --- Mathematics. --- Measurable cardinal. --- Metamathematics. --- Metatheorem. --- Model theory. --- Mostowski. --- Natural number. --- Negation. --- Non-standard analysis. --- Notation. --- P-adic analysis. --- Peano axioms. --- Polynomial. --- Positional notation. --- Power of two. --- Power set. --- Primitive notion. --- Primitive recursive function. --- Principia Mathematica. --- Probability theory. --- Quantifier (logic). --- Quantity. --- Ranking (information retrieval). --- Rational number. --- Real number. --- Recursion (computer science). --- Remainder. --- Requirement. --- Robert Langlands. --- Rule of inference. --- Scientific notation. --- Sequence. --- Set theory. --- Subset. --- Theorem. --- Theory. --- Transfer principle. --- Transfinite number. --- Triviality (mathematics). --- Tuple. --- Uniqueness. --- Universal quantification. --- Variable (mathematics). --- Zermelo–Fraenkel set theory.
Choose an application
How the concept of proof has enabled the creation of mathematical knowledgeThe Story of Proof investigates the evolution of the concept of proof—one of the most significant and defining features of mathematical thought—through critical episodes in its history. From the Pythagorean theorem to modern times, and across all major mathematical disciplines, John Stillwell demonstrates that proof is a mathematically vital concept, inspiring innovation and playing a critical role in generating knowledge.Stillwell begins with Euclid and his influence on the development of geometry and its methods of proof, followed by algebra, which began as a self-contained discipline but later came to rival geometry in its mathematical impact. In particular, the infinite processes of calculus were at first viewed as “infinitesimal algebra,” and calculus became an arena for algebraic, computational proofs rather than axiomatic proofs in the style of Euclid. Stillwell proceeds to the areas of number theory, non-Euclidean geometry, topology, and logic, and peers into the deep chasm between natural number arithmetic and the real numbers. In its depths, Cantor, Gödel, Turing, and others found that the concept of proof is ultimately part of arithmetic. This startling fact imposes fundamental limits on what theorems can be proved and what problems can be solved.Shedding light on the workings of mathematics at its most fundamental levels, The Story of Proof offers a compelling new perspective on the field’s power and progress.
Proof theory. --- Mathematicians. --- Scientists --- Logic, Symbolic and mathematical --- Accuracy and precision. --- Addition. --- Aleph number. --- Algorithm. --- Analogy. --- Analysis. --- Archimedean property. --- Associative property. --- Axiom of choice. --- Axiom schema. --- Axiom. --- Bijection. --- Calculation. --- Certainty. --- Coefficient. --- Commutative property. --- Computability theory. --- Computability. --- Computable function. --- Computation. --- Constructible number. --- Constructive analysis. --- Continuous function (set theory). --- Corollary. --- Countable set. --- Credential. --- Dedekind cut. --- Desargues's theorem. --- Determinant. --- Direct proof. --- Equation. --- Equinumerosity. --- Estimation. --- Estimator. --- Extreme value theorem. --- Fundamental theorem. --- Gentzen's consistency proof. --- Geometry. --- Hypotenuse. --- Hypothesis. --- Identifiability. --- Inference. --- Infimum and supremum. --- Infinitesimal. --- Intermediate value theorem. --- Intuitionism. --- Logic. --- Logical connective. --- Mathematical induction. --- Mathematician. --- Mathematics. --- Maximal element. --- Natural number. --- Number theory. --- Obstacle. --- Ordinal number. --- Peano axioms. --- Permutation group. --- Permutation. --- Planarity. --- Playfair's axiom. --- Polygon. --- Polynomial. --- Power set. --- Predicate logic. --- Prediction. --- Prime factor. --- Prime number. --- Proof by infinite descent. --- Pythagorean theorem. --- Quantifier (logic). --- Quantity. --- Quaternion. --- Quintic function. --- Rational number. --- Real number. --- Reason. --- Recursively enumerable set. --- Rule of inference. --- Satisfiability. --- Self-reference. --- Sequence. --- Set theory. --- Special case. --- Staffing. --- Subsequence. --- Subset. --- Summation. --- Symbolic computation. --- Symmetry group. --- Theorem. --- Theory. --- Total order. --- Truth value. --- Turing machine. --- Unit square. --- Vector space. --- Well-order. --- Zorn's lemma.
Listing 1 - 2 of 2 |
Sort by
|