Listing 1 - 1 of 1 |
Sort by
|
Choose an application
Motorcyclist security evaluation using numerical methods has been increasingly developed in order to obtain detailed information on helmet behaviour during crashes. Among these methods, the assessment of the severity of certain crash types can help to guide helmet optimisation. However, some material behaviours used in helmet design are nonlinear and can induce instabilities in the model. The objective of this work is to develop a numerical model of a full-face helmet that can encompass a wide range of helmet designs and be used in complex simulations, such as highspeed crashes against highway barriers. The materials used in the helmet were first calibrated before being implemented to decrease the instability issues that could occur during simulation. The outer shell is made of acrylonitrile butadiene styrene and is modelled using an elastic model and Belytschko-Lin-Tsay shell element. The expanded polystyrene and the open-cell polyurethane exhibit strain-rate-dependent behaviour and are known to generate instabilities in the model. Two types of element mesh are tested for the foams. The first one is a 1-point integration tetrahedron mesh. The second one is a fully integrated hexahedron mesh with a selectively reduced integration formulation. Both formulations are compared in their ability to reproduce experimental drop tests. Unfortunately, despite the good match between the results of the simulation and the experimental data, the behaviour of the expanded polystyrene is not stiff enough to be realistic. This leads to a volume compression ratio exceeding 80% instead of being capped around 70% of compression. Afterwards, the helmet’s computer-aided design and the finite element mesh were constructed, taking into account constraints that arose from the previous calibration step. The helmet model obtained is then compared to experimental data from ECE R22-05 standard drop tests. Unfortunately, the results of the drop tests did not match the reference results. This may be attributed mainly to the use of an elastic material to model the outer shell and an expanded polystyrene model not stiff enough. La question de l’évaluation de la sécurité des motocyclistes au moyen de méthodes numériques est un domaine en plein développement permettant d’obtenir des information détaillées sur le comportement des casques lors d’un accident de la route. Pour toutes ces méthodes, l’évaluation de la sévérité de certains types d’accidents peut aider à guider l’optimisation du design des casques. Cependant, le comportement de certaines des matières utilisées dans la conception du casque est non-linéaire, ce qui peut mener à des instabilités dans la modélisation. L’objectif de ce travail est de développer un modèle numérique d’un casque intégral qui peut s’appliquer à une large variété de designs de casques et être utilisé dans des simulations complexes, comme des collisions à haute vitesse contre des garde-fous d’autoroute. Les matériaux utilisés dans le casque ont d’abord été calibrés avant d’être implémentés afin de diminuer les problèmes d’instabilité qui pourraient se présenter lors d’une simulation. La partie extérieure du casque est faite d’acrylonitrile-butadiène-styrène et est modélisée au moyen d’un modèle élastique et d’un élément de coque de Belytschko-Lin-Tsay. Le polystyrène étendu et le polyuréthane à cellule ouverte présentent une dépendance aux effets de vitesse de déformation et sont connus pour créer des instabilités dans les modèles. Deux type de maillage ont été testés pour les mousses. Le premier, un maillage tétraédrique présentant un unique point d’intégration. Le second, un maillage "hexaédrique" complètement intégré avec une formulation de réduction sélective de l’intégration. Les deux méthodes sont comparées quant à leur aptitude à reproduire les résultats de tests de chute expérimentaux. Malheureusement, malgré le bon accord entre les résultats de la simulation et les données expérimentales, le comportement du polystyrène étendu n’est pas assez rigide que pour être réaliste. Cela mène à l’observation d’un rapport de compression en volume de 80%, plutôt que le comportement réel d’être plafonné vers 70%. Par après, le design assisté par ordinateur et le maillage d’éléments finis ont été construits en prenant en compte les contraintes imposées par la calibration des matériaux. Le modèle de casque alors obtenu est ensuite comparé aux données expérimentales des tests de chutes standards ECE R22-05. Malheureusement, les résultats des tests de chute simulés ne correspondent pas aux résultats de référence. Cela peut être attribué principalement à l’utilisation d’un matériau élastique pour modéliser la couche externe et à un modèle de polystyrène étendu qui ne présente pas la bonne rigidité.
Motorcyclist helmet --- Expanded polystyrene --- LS-DYNA --- Casque de moto --- LS-DYNA --- Polystyrène étendu --- Ingénierie, informatique & technologie > Ingénierie aérospatiale
Listing 1 - 1 of 1 |
Sort by
|