Listing 1 - 8 of 8 |
Sort by
|
Choose an application
The sequence of a postulated core melt down accident in the reactor pressure vessel (RPV) of a pressurised water reactor (PWR) involves a large number of complex physical and chemical phenomena. The main objective of the LIVE program is to study the core melt phe-nomena during the late phase of core melt progression in the RPV both experimentally in large-scale 3D geometry in supporting separate-effects tests and analytically using CFD codes in order to provide a reasonable estimate of the remaining uncertainty band under the aspect of safety assessment. The main objective of the LIVE-L3A experiment was to investigate the behaviour of the mol-ten pool and the formation of the crust at the melt/vessel wall interface influenced by the melt relocation position and initial cooling conditions. The test conditions in the LIVE- L3A test were similar to the LIVE-L3 test except the initial cooling conditions. In both tests the melt was poured near to the vessel wall. In the LIVE-L3 test the vessel was initially cooled by air and then by water; in the LIVE-L3A test the vessel was cooled by water already at the start of the experiment. The information obtained in the test includes horizontal and vertical heat flux distribution through the RPV wall, crust growth velocity and dependence of the crust properties on the crust growth velocity and cooling conditions. Supporting post-test analysis contributes to the characterization of solidification processes of binary non-eutectic melts. The results of the LIVE-L3 and LIVE-L3A tests are compared in order to characterize the impact of transient cooling condition on the crust solidification characteristics and melt pool behaviour including interface temperature, time to reach thermal hydraulic steady-state and the steady-state heat flux distribution. The report summarizes the objectives of the LIVE program and presents the main results obtained in the LIVE-L3A test compared to the LIVE-L3 test.
Choose an application
Microwave amplifiers --- Poisson's equation --- Design and construction. --- Numerical solutions.
Choose an application
Sampling (Statistics) --- Poisson distribution. --- Poisson's equation --- Numerical solutions.
Choose an application
Poisson's equation. --- Wave equation. --- Mathematical physics --- Potential theory (Mathematics) --- Green's functions. --- Heat equation. --- Potential theory (Mathematics).
Choose an application
This introduction to finite elements, iterative linear solvers and scientific computing includes theoretical problems and practical exercises closely tied with freely downloadable MATLAB software.
Fluid dynamics --- Differential equations, Partial. --- Finite element method. --- FEA (Numerical analysis) --- FEM (Numerical analysis) --- Finite element analysis --- Numerical analysis --- Isogeometric analysis --- Partial differential equations --- CFD (Computational fluid dynamics) --- Data processing. --- Computer simulation --- Data processing --- Iterative methods (Mathematics) --- Fluid dynamics. --- Poisson's equation. --- Stokes equations.
Choose an application
This brief book introduces the Poisson-Boltzmann equation in three chapters that build upon one another, offering a systematic entry to advanced students and researchers. Chapter one formulates the equation and develops the linearized version of Debye-Hückel theory as well as exact solutions to the nonlinear equation in simple geometries and generalizations to higher-order equations. Chapter two introduces the statistical physics approach to the Poisson-Boltzmann equation. It allows the treatment of fluctuation effects, treated in the loop expansion, and in a variational approach. First applications are treated in detail: the problem of the surface tension under the addition of salt, a classic problem discussed by Onsager and Samaras in the 1930s, which is developed in modern terms within the loop expansion, and the adsorption of a charged polymer on a like-charged surface within the variational approach. Chapter three finally discusses the extension of Poisson-Boltzmann theory to explicit solvent. This is done in two ways: on the phenomenological level of nonlocal electrostatics and with a statistical physics model that treats the solvent molecules as molecular dipoles. This model is then treated in the mean-field approximation and with the variational method introduced in Chapter two, rounding up the development of the mathematical approaches of Poisson-Boltzmann theory. After studying this book, a graduate student will be able to access the research literature on the Poisson-Boltzmann equation with a solid background. .
Statistical Physics. --- Electrochemistry. --- Differential equations. --- Surfaces (Technology). --- Thin films. --- Differential Equations. --- Surfaces, Interfaces and Thin Film. --- Films, Thin --- Solid film --- Solid state electronics --- Solids --- Surfaces (Technology) --- Coatings --- Thick films --- Materials --- Surface phenomena --- Friction --- Surfaces (Physics) --- Tribology --- 517.91 Differential equations --- Differential equations --- Chemistry, Physical and theoretical --- Physics --- Mathematical statistics --- Surfaces --- Statistical methods --- Equations. --- Poisson's equation. --- Differential equations, Elliptic --- Algebra --- Mathematics
Choose an application
Graduate students in the natural sciences-including not only geophysics and space physics but also atmospheric and planetary physics, ocean sciences, and astronomy-need a broad-based mathematical toolbox to facilitate their research. In addition, they need to survey a wider array of mathematical methods that, while outside their particular areas of expertise, are important in related ones. While it is unrealistic to expect them to develop an encyclopedic knowledge of all the methods that are out there, they need to know how and where to obtain reliable and effective insights into these broader areas. Here at last is a graduate textbook that provides these students with the mathematical skills they need to succeed in today's highly interdisciplinary research environment. This authoritative and accessible book covers everything from the elements of vector and tensor analysis to ordinary differential equations, special functions, and chaos and fractals. Other topics include integral transforms, complex analysis, and inverse theory; partial differential equations of mathematical geophysics; probability, statistics, and computational methods; and much more. Proven in the classroom, Mathematical Methods for Geophysics and Space Physics features numerous exercises throughout as well as suggestions for further reading. Provides an authoritative and accessible introduction to the subject Covers vector and tensor analysis, ordinary differential equations, integrals and approximations, Fourier transforms, diffusion and dispersion, sound waves and perturbation theory, randomness in data, and a host of other topics Features numerous exercises throughout Ideal for students and researchers alike an online illustration package is available to professors
Geophysics --- Cosmic physics --- Physics --- Space sciences --- Mathematics. --- Analytical mechanics. --- Applied mathematics. --- Atmospheric physics. --- Bessel function. --- Bifurcation theory. --- Calculation. --- Calculus of variations. --- Cartesian coordinate system. --- Cauchy's theorem (geometry). --- Celestial mechanics. --- Central limit theorem. --- Chaos theory. --- Classical electromagnetism. --- Classical mechanics. --- Classical physics. --- Convolution theorem. --- Deformation (mechanics). --- Degeneracy (mathematics). --- Diagram (category theory). --- Differential equation. --- Drag (physics). --- Earth science. --- Eigenvalues and eigenvectors. --- Einstein notation. --- Elliptic integral. --- Elliptic orbit. --- Equation. --- Expectation value (quantum mechanics). --- Figure of the Earth. --- Forcing function (differential equations). --- Fourier series. --- Fourier transform. --- Fractal dimension. --- Function (mathematics). --- Gaussian function. --- Geochemistry. --- Geochronology. --- Geodesics in general relativity. --- Geometry. --- Geophysics. --- Gravitational acceleration. --- Gravitational constant. --- Gravitational potential. --- Gravitational two-body problem. --- Hamiltonian mechanics. --- Handbook of mathematical functions. --- Harmonic oscillator. --- Helmholtz equation. --- Hilbert transform. --- Hyperbolic partial differential equation. --- Integral equation. --- Isotope geochemistry. --- Lagrangian (field theory). --- Laplace transform. --- Laplace's equation. --- Laws of thermodynamics. --- Limit (mathematics). --- Line (geometry). --- Lorenz system. --- Mathematical analysis. --- Mathematical geophysics. --- Mathematical physics. --- Newton's law of universal gravitation. --- Newton's laws of motion. --- Newton's method. --- Newtonian dynamics. --- Numerical analysis. --- Numerical integration. --- Operator (physics). --- Orbit. --- Orbital resonance. --- Parseval's theorem. --- Partial differential equation. --- Perturbation theory (quantum mechanics). --- Perturbation theory. --- Planetary body. --- Planetary science. --- Poisson's equation. --- Pole (complex analysis). --- Proportionality (mathematics). --- Quantum mechanics. --- Rotation (mathematics). --- Satellite geodesy. --- Scalar (physics). --- Scientific notation. --- Separatrix (mathematics). --- Sign (mathematics). --- Space physics. --- Statistical mechanics. --- Stokes' theorem. --- Three-dimensional space (mathematics). --- Transformation geometry. --- Trapezoidal rule. --- Truncation error (numerical integration). --- Two-dimensional space. --- Van der Pol oscillator. --- Variable (mathematics). --- Vector space. --- Wave equation.
Choose an application
The aim of this work is to provide a proof of the nonlinear gravitational stability of the Minkowski space-time. More precisely, the book offers a constructive proof of global, smooth solutions to the Einstein Vacuum Equations, which look, in the large, like the Minkowski space-time. In particular, these solutions are free of black holes and singularities. The work contains a detailed description of the sense in which these solutions are close to the Minkowski space-time, in all directions. It thus provides the mathematical framework in which we can give a rigorous derivation of the laws of gravitation proposed by Bondi. Moreover, it establishes other important conclusions concerning the nonlinear character of gravitational radiation. The authors obtain their solutions as dynamic developments of all initial data sets, which are close, in a precise manner, to the flat initial data set corresponding to the Minkowski space-time. They thus establish the global dynamic stability of the latter.Originally published in 1994.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Space and time --- Generalized spaces --- Nonlinear theories --- Physics --- Physical Sciences & Mathematics --- Atomic Physics --- Nonlinear problems --- Nonlinearity (Mathematics) --- Calculus --- Mathematical analysis --- Mathematical physics --- Geometry of paths --- Minkowski space --- Spaces, Generalized --- Weyl space --- Calculus of tensors --- Geometry, Differential --- Geometry, Non-Euclidean --- Hyperspace --- Relativity (Physics) --- Space of more than three dimensions --- Space-time --- Space-time continuum --- Space-times --- Spacetime --- Time and space --- Fourth dimension --- Infinite --- Metaphysics --- Philosophy --- Space sciences --- Time --- Beginning --- Mathematics --- Angular momentum operator. --- Asymptotic analysis. --- Asymptotic expansion. --- Big O notation. --- Boundary value problem. --- Cauchy–Riemann equations. --- Coarea formula. --- Coefficient. --- Compactification (mathematics). --- Comparison theorem. --- Corollary. --- Covariant derivative. --- Curvature tensor. --- Curvature. --- Cut locus (Riemannian manifold). --- Degeneracy (mathematics). --- Degrees of freedom (statistics). --- Derivative. --- Diffeomorphism. --- Differentiable function. --- Eigenvalues and eigenvectors. --- Eikonal equation. --- Einstein field equations. --- Equation. --- Error term. --- Estimation. --- Euclidean space. --- Existence theorem. --- Existential quantification. --- Exponential map (Lie theory). --- Exponential map (Riemannian geometry). --- Exterior (topology). --- Foliation. --- Fréchet derivative. --- Geodesic curvature. --- Geodesic. --- Geodesics in general relativity. --- Geometry. --- Hodge dual. --- Homotopy. --- Hyperbolic partial differential equation. --- Hypersurface. --- Hölder's inequality. --- Identity (mathematics). --- Infinitesimal generator (stochastic processes). --- Integral curve. --- Intersection (set theory). --- Isoperimetric inequality. --- Laplace's equation. --- Lie algebra. --- Lie derivative. --- Linear equation. --- Linear map. --- Logarithm. --- Lorentz group. --- Lp space. --- Mass formula. --- Mean curvature. --- Metric tensor. --- Minkowski space. --- Nonlinear system. --- Normal (geometry). --- Null hypersurface. --- Orthonormal basis. --- Partial derivative. --- Poisson's equation. --- Projection (linear algebra). --- Quantity. --- Radial function. --- Ricci curvature. --- Riemann curvature tensor. --- Riemann surface. --- Riemannian geometry. --- Riemannian manifold. --- Sard's theorem. --- Scalar (physics). --- Scalar curvature. --- Scale invariance. --- Schwarzschild metric. --- Second derivative. --- Second fundamental form. --- Sobolev inequality. --- Sobolev space. --- Stokes formula. --- Stokes' theorem. --- Stress–energy tensor. --- Symmetric tensor. --- Symmetrization. --- Tangent space. --- Tensor product. --- Theorem. --- Trace (linear algebra). --- Transversal (geometry). --- Triangle inequality. --- Uniformization theorem. --- Unit sphere. --- Vector field. --- Volume element. --- Wave equation. --- Weyl tensor.
Listing 1 - 8 of 8 |
Sort by
|