Listing 1 - 10 of 21 | << page >> |
Sort by
|
Choose an application
The enhancement of life and the performance of metal engineering components is mainly determined by surface characteristics. The latter has a pivotal role in enhancing the life of products since they control the mechanical, electrical, thermal, and electronic properties. Nevertheless, the surface and near-surface properties are crucial in failure mechanisms since the loss of performance and failures mostly begin from the surface. Research advances in the designing, processing, and characterizing of textured surfaces broadly support innovative industrial applications and products.The performance improvement in engineering components during operation is a challenging issue and surface engineering methods have been attracting considerable interest in both research and industrial fields. Even though many attempts have been made to face the wear of metals by tuning the physical, chemical, mechanical, and metallurgical properties of their surfaces, several important aspects need to be still deepened.The present book collects original research papers and a review that covers the latest development in methods for enhancing the life and functionality of engineering components by tuning the physical, chemical, mechanical, and metallurgical properties of their surfaces. Attention is focused on processing and characterizing methods capable of supporting industrial applications and products to both tackle surface degradation and improve the performance and reliability of components.
Technology: general issues --- HVOF coatings --- sliding wear --- brake systems --- magnesium alloy --- forging --- fatigue --- microstructure --- plasma electrolytic oxidation (PEO) --- micro arc oxidation (MAO) --- electroplating --- Ni–P coatings --- SiC particles --- heat treatment --- wear --- laser hardening --- ausferrite --- austempered ductile iron --- nodular iron --- hardfacing --- high chromium cast iron --- erosion tests --- wear resistance --- n/a --- Ni-P coatings
Choose an application
The enhancement of life and the performance of metal engineering components is mainly determined by surface characteristics. The latter has a pivotal role in enhancing the life of products since they control the mechanical, electrical, thermal, and electronic properties. Nevertheless, the surface and near-surface properties are crucial in failure mechanisms since the loss of performance and failures mostly begin from the surface. Research advances in the designing, processing, and characterizing of textured surfaces broadly support innovative industrial applications and products.The performance improvement in engineering components during operation is a challenging issue and surface engineering methods have been attracting considerable interest in both research and industrial fields. Even though many attempts have been made to face the wear of metals by tuning the physical, chemical, mechanical, and metallurgical properties of their surfaces, several important aspects need to be still deepened.The present book collects original research papers and a review that covers the latest development in methods for enhancing the life and functionality of engineering components by tuning the physical, chemical, mechanical, and metallurgical properties of their surfaces. Attention is focused on processing and characterizing methods capable of supporting industrial applications and products to both tackle surface degradation and improve the performance and reliability of components.
HVOF coatings --- sliding wear --- brake systems --- magnesium alloy --- forging --- fatigue --- microstructure --- plasma electrolytic oxidation (PEO) --- micro arc oxidation (MAO) --- electroplating --- Ni–P coatings --- SiC particles --- heat treatment --- wear --- laser hardening --- ausferrite --- austempered ductile iron --- nodular iron --- hardfacing --- high chromium cast iron --- erosion tests --- wear resistance --- n/a --- Ni-P coatings
Choose an application
The enhancement of life and the performance of metal engineering components is mainly determined by surface characteristics. The latter has a pivotal role in enhancing the life of products since they control the mechanical, electrical, thermal, and electronic properties. Nevertheless, the surface and near-surface properties are crucial in failure mechanisms since the loss of performance and failures mostly begin from the surface. Research advances in the designing, processing, and characterizing of textured surfaces broadly support innovative industrial applications and products.The performance improvement in engineering components during operation is a challenging issue and surface engineering methods have been attracting considerable interest in both research and industrial fields. Even though many attempts have been made to face the wear of metals by tuning the physical, chemical, mechanical, and metallurgical properties of their surfaces, several important aspects need to be still deepened.The present book collects original research papers and a review that covers the latest development in methods for enhancing the life and functionality of engineering components by tuning the physical, chemical, mechanical, and metallurgical properties of their surfaces. Attention is focused on processing and characterizing methods capable of supporting industrial applications and products to both tackle surface degradation and improve the performance and reliability of components.
Technology: general issues --- HVOF coatings --- sliding wear --- brake systems --- magnesium alloy --- forging --- fatigue --- microstructure --- plasma electrolytic oxidation (PEO) --- micro arc oxidation (MAO) --- electroplating --- Ni-P coatings --- SiC particles --- heat treatment --- wear --- laser hardening --- ausferrite --- austempered ductile iron --- nodular iron --- hardfacing --- high chromium cast iron --- erosion tests --- wear resistance
Choose an application
In recent decades, there have been extensive developments in science and technology. These advances provide new techniques to deposit coatings onto various substrates, thus, addressing the ever-increasing performance requirements of various applications. Moreover, as technology itself develops, there are new problems that require new solutions, some of which can be solved through the application of coatings. Thus, the demands from coatings are continually increasing and the field is growing. The collection of articles contained within this volume cover a wide range of different research approaches to coatings reflecting the expanding field of coatings. It covers examples from topics such as a cold spray of magnesium alloys onto steel substrates, mechanical coatings of Ti-based materials onto steel balls, electroless plating of Ni-P coating onto an Mg-based alloy, magnetron sputtering of Ru-Zr coatings onto a Si wafer, a review of ionic liquids that form surface layers, as corrosion inhibitors, nano-composite epoxy coatings containing exfoliated clay (montmorillonite) for steel protection, a coating based on plasma electrolytic oxidation of an aluminum alloy and inhibited epoxy primer for aerospace aluminum alloys. This volume provides a wide-angle snapshot of current coating technologies through the presentation of some specific studies.
Research & information: general --- cyclical gradient concentration --- internal oxidation --- multilayer coating --- nanocomposite coating --- Ti coatings --- steel balls --- mechanical coating --- process analysis --- steel --- corrosion --- protection --- coatings --- epoxy—clay nanocomposites --- primer --- Li-inhibited --- AA2024 --- polyurethane --- SEM --- EDS --- PIXE --- PIGE --- leaching --- pigments --- ionic liquid --- polyionic liquid --- graphene --- hybrid coating --- electroless deposition --- Ni–P coating --- magnesium alloy --- ZE10 --- adhesion --- microhardness --- EDS analysis --- polarization test --- plasma electrolytic oxidation (PEO) --- aluminum --- three-dimensional structure --- aluminum/coating interface --- growth model --- cold spraying --- coating --- composite coatings --- microstructure
Choose an application
In recent decades, there have been extensive developments in science and technology. These advances provide new techniques to deposit coatings onto various substrates, thus, addressing the ever-increasing performance requirements of various applications. Moreover, as technology itself develops, there are new problems that require new solutions, some of which can be solved through the application of coatings. Thus, the demands from coatings are continually increasing and the field is growing. The collection of articles contained within this volume cover a wide range of different research approaches to coatings reflecting the expanding field of coatings. It covers examples from topics such as a cold spray of magnesium alloys onto steel substrates, mechanical coatings of Ti-based materials onto steel balls, electroless plating of Ni-P coating onto an Mg-based alloy, magnetron sputtering of Ru-Zr coatings onto a Si wafer, a review of ionic liquids that form surface layers, as corrosion inhibitors, nano-composite epoxy coatings containing exfoliated clay (montmorillonite) for steel protection, a coating based on plasma electrolytic oxidation of an aluminum alloy and inhibited epoxy primer for aerospace aluminum alloys. This volume provides a wide-angle snapshot of current coating technologies through the presentation of some specific studies.
cyclical gradient concentration --- internal oxidation --- multilayer coating --- nanocomposite coating --- Ti coatings --- steel balls --- mechanical coating --- process analysis --- steel --- corrosion --- protection --- coatings --- epoxy—clay nanocomposites --- primer --- Li-inhibited --- AA2024 --- polyurethane --- SEM --- EDS --- PIXE --- PIGE --- leaching --- pigments --- ionic liquid --- polyionic liquid --- graphene --- hybrid coating --- electroless deposition --- Ni–P coating --- magnesium alloy --- ZE10 --- adhesion --- microhardness --- EDS analysis --- polarization test --- plasma electrolytic oxidation (PEO) --- aluminum --- three-dimensional structure --- aluminum/coating interface --- growth model --- cold spraying --- coating --- composite coatings --- microstructure
Choose an application
In recent decades, there have been extensive developments in science and technology. These advances provide new techniques to deposit coatings onto various substrates, thus, addressing the ever-increasing performance requirements of various applications. Moreover, as technology itself develops, there are new problems that require new solutions, some of which can be solved through the application of coatings. Thus, the demands from coatings are continually increasing and the field is growing. The collection of articles contained within this volume cover a wide range of different research approaches to coatings reflecting the expanding field of coatings. It covers examples from topics such as a cold spray of magnesium alloys onto steel substrates, mechanical coatings of Ti-based materials onto steel balls, electroless plating of Ni-P coating onto an Mg-based alloy, magnetron sputtering of Ru-Zr coatings onto a Si wafer, a review of ionic liquids that form surface layers, as corrosion inhibitors, nano-composite epoxy coatings containing exfoliated clay (montmorillonite) for steel protection, a coating based on plasma electrolytic oxidation of an aluminum alloy and inhibited epoxy primer for aerospace aluminum alloys. This volume provides a wide-angle snapshot of current coating technologies through the presentation of some specific studies.
Research & information: general --- cyclical gradient concentration --- internal oxidation --- multilayer coating --- nanocomposite coating --- Ti coatings --- steel balls --- mechanical coating --- process analysis --- steel --- corrosion --- protection --- coatings --- epoxy—clay nanocomposites --- primer --- Li-inhibited --- AA2024 --- polyurethane --- SEM --- EDS --- PIXE --- PIGE --- leaching --- pigments --- ionic liquid --- polyionic liquid --- graphene --- hybrid coating --- electroless deposition --- Ni–P coating --- magnesium alloy --- ZE10 --- adhesion --- microhardness --- EDS analysis --- polarization test --- plasma electrolytic oxidation (PEO) --- aluminum --- three-dimensional structure --- aluminum/coating interface --- growth model --- cold spraying --- coating --- composite coatings --- microstructure
Choose an application
Thin film processes are significantly incorporated in manufacturing display panels, secondary batteries, fuel/solar cells, catalytic films, membranes, adhesives, and other commodity films. This Special Issue on “Thin Film Processes” of Processes listed recent progress on thin-film processes, covering theoretical considerations, experimental observations, and computational techniques. Articles in this Issue consider comprehensive studies on thin film processes and related materials.
History of engineering & technology --- electrode --- layer-by-layer --- liquid crystal device --- thin film --- 6082-T6 aluminum alloy --- Plasma Electrolytic Oxidation (PEO) --- Plasma Spray Ceramic (PSC) --- Hard Anodizing (HA) --- anodic polarization --- corrosion resistance --- lemongrass --- Cymbopogon citratus --- convection drying --- mathematical modeling --- moisture diffusivity --- activation energy --- Jeffrey, Maxwell, Oldroyed-B fluids --- unsteady stretching surface --- magnetic field --- homotropy analysis method (HAM) --- entropy generation --- second-grade fluid --- nanofluid --- liquid films --- time depending stretching surface --- HAM --- Al(OH)3 --- BaSO4 --- filler --- ultrafine powder coatings --- Sisko fluid --- unsteady stretching sheet --- thin films --- MHD --- HAM and numerical method --- coatings industry --- digitalization --- development process --- technical enabler --- process analysis --- process simulation --- hydrocarbon fuel --- coke --- anti-coking coating --- growth characteristics --- n/a
Choose an application
Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), functionalizes surfaces, improving the mechanical, thermal, and corrosion performance of metallic substrates, along with other tailored properties (e.g., biocompatibility, catalysis, antibacterial response, self-lubrication, etc.). The extensive field of applications of this technique ranges from structural components, in particular, in the transport sector, to more advanced fields, such as bioengineering. The present Special Issue covers the latest advances in PEO‐coated light alloys for structural (Al, Mg) and biomedical applications (Ti, Mg), with 10 research papers and 1 review from leading research groups around the world.
Research & information: general --- Technology: general issues --- magnesium --- plasma electrolytic oxidation --- SiO2 particle --- corrosion resistance --- wear resistance --- micro arc oxidation (MAO) --- Cu nano-layer --- hydrophilic surface --- apatite --- in vitro bioactivity --- antibacterial properties --- PEO --- LDH --- active protection --- corrosion --- aluminium --- biodegradable implants --- magnesium alloy --- micro-arc oxidation --- Taguchi method --- SBF --- in-vivo test --- biodegradability --- plasma electrolytic oxidation (PEO) --- aluminum 6082 --- luminescent coatings --- phosphorescence --- anodized aluminum --- Mott-Schottky analysis --- defect --- annealing --- titanium dioxide --- anatase and rutile --- surface treatment --- wear --- medical engineering --- aluminum --- titanium --- Al7075 alloy --- aluminum oxide --- molten salt --- microhardness --- radio frequency magnetron sputtering (RFMS) --- calcium-phosphate (CaP) coating --- n/a
Choose an application
Plasma electrolytic oxidation (PEO), also known as micro-arc oxidation (MAO), functionalizes surfaces, improving the mechanical, thermal, and corrosion performance of metallic substrates, along with other tailored properties (e.g., biocompatibility, catalysis, antibacterial response, self-lubrication, etc.). The extensive field of applications of this technique ranges from structural components, in particular, in the transport sector, to more advanced fields, such as bioengineering. The present Special Issue covers the latest advances in PEO‐coated light alloys for structural (Al, Mg) and biomedical applications (Ti, Mg), with 10 research papers and 1 review from leading research groups around the world.
magnesium --- plasma electrolytic oxidation --- SiO2 particle --- corrosion resistance --- wear resistance --- micro arc oxidation (MAO) --- Cu nano-layer --- hydrophilic surface --- apatite --- in vitro bioactivity --- antibacterial properties --- PEO --- LDH --- active protection --- corrosion --- aluminium --- biodegradable implants --- magnesium alloy --- micro-arc oxidation --- Taguchi method --- SBF --- in-vivo test --- biodegradability --- plasma electrolytic oxidation (PEO) --- aluminum 6082 --- luminescent coatings --- phosphorescence --- anodized aluminum --- Mott-Schottky analysis --- defect --- annealing --- titanium dioxide --- anatase and rutile --- surface treatment --- wear --- medical engineering --- aluminum --- titanium --- Al7075 alloy --- aluminum oxide --- molten salt --- microhardness --- radio frequency magnetron sputtering (RFMS) --- calcium-phosphate (CaP) coating --- n/a
Choose an application
This book focuses on recent advances in plasma technology and its application to metals, alloys, and related materials. Surface modifications, material syntheses, cutting and surface coatings are performed using low-pressure plasma or atmospheric-pressure plasma. The contributions of this book include the discussion of a wide scope of plasma technologies applied to materials. Plasma is a versatile tool that can be applied in many types of material processing. New material processing applications of plasmas and new plasma technologies are being developed rapidly. We hope that this book can contribute new knowledge to the plasma material research society.
cathodic plasma electrolysis deposition --- Al2O3 coating --- oxidation --- solution surface tension --- nitrogen plasma --- Ga droplet --- GaN nanodot --- transmission electron microscopy --- wurtzite --- Zinc-blende --- plasma cutting --- cut heat affected zone --- mini-tensile test --- steel plate --- residual stress --- atmospheric pressure plasma jet --- platinum --- tin oxide --- dye-sensitized solar cells --- chloroplatinic acid --- tin chloride --- self-lubricating --- composite coating --- titanium --- plasma electrolytic oxidation (PEO) --- polytetrafluoroethylene (PTFE) --- plasma nitriding --- atmospheric-pressure plasma --- nitrogen dose amount --- hydrogen fraction --- void --- Ti6Al4V lattice structure --- Ag-doped TiO2 anatase --- spark plasma sintering --- selective laser melting --- additive manufacturing --- antibacterial and photoactivity applications --- aluminum --- surface --- plasma --- nitrogen --- postdischarge --- atmospheric pressure --- wettability --- organic-inorganic halide perovskite --- air plasma --- plasma treatment --- optoelectronic properties --- morphology --- n/a
Listing 1 - 10 of 21 | << page >> |
Sort by
|