Listing 1 - 2 of 2 |
Sort by
|
Choose an application
Monitoring of vegetation structure and functioning is critical to modeling terrestrial ecosystems and energy cycles. In particular, leaf area index (LAI) is an important structural property of vegetation used in many land surface vegetation, climate, and crop production models. Canopy structure (LAI, fCover, plant height, and biomass) and biochemical parameters (leaf pigmentation and water content) directly influence the radiative transfer process of sunlight in vegetation, determining the amount of radiation measured by passive sensors in the visible and infrared portions of the electromagnetic spectrum. Optical remote sensing (RS) methods build relationships exploiting in situ measurements and/or as outputs of physical canopy radiative transfer models. The increased availability of passive (radar and LiDAR) RS data has fostered their use in many applications for the analysis of land surface properties and processes, thanks also to their insensitivity to weather conditions and the capability to exploit rich structural and textural information. Data fusion and multi-sensor integration techniques are pressing topics to fully exploit the information conveyed by both optical and microwave bands.
artificial neural network --- downscaling --- simulation --- 3D point cloud --- European beech --- consistency --- adaptive threshold --- evaluation --- photosynthesis --- geographic information system --- P-band PolInSAR --- validation --- density-based clustering --- structure from motion (SfM) --- EPIC --- Tanzania --- signal attenuation --- trunk --- canopy closure --- REDD+ --- unmanned aerial vehicle (UAV) --- forest --- recursive feature elimination --- Fraction of Photosynthetically Active Radiation absorbed by vegetation (FPAR) --- aboveground biomass --- random forest --- uncertainty --- household survey --- spectral information --- forests biomass --- root biomass --- biomass --- unmanned aerial vehicle --- Brazilian Amazon --- VIIRS --- global positioning system --- LAI --- photochemical reflectance index (PRI) --- allometric scaling and resource limitation --- R690/R630 --- modelling aboveground biomass --- leaf area index --- forest degradation --- spectral analyses --- terrestrial laser scanning --- BAAPA --- leaf area index (LAI) --- stem volume estimation --- tomographic profiles --- polarization coherence tomography (PCT) --- canopy gap fraction --- automated classification --- HemiView --- remote sensing --- multisource remote sensing --- Pléiades imagery --- photogrammetric point cloud --- farm types --- terrestrial LiDAR --- altitude --- RapidEye --- forest aboveground biomass --- recovery --- southern U.S. forests --- NDVI --- machine-learning --- conifer forest --- satellite --- chlorophyll fluorescence (ChlF) --- tree heights --- phenology --- point cloud --- local maxima --- clumping index --- MODIS --- digital aerial photograph --- Mediterranean --- hemispherical sky-oriented photo --- managed temperate coniferous forests --- fixed tree window size --- drought --- GLAS --- smartphone-based method --- forest above ground biomass (AGB) --- forest inventory --- over and understory cover --- sampling design
Choose an application
Recently, growing interest in the use of remote sensing imagery has appeared to provide synoptic maps of water quality parameters in coastal and inner water ecosystems;, monitoring of complex land ecosystems for biodiversity conservation; precision agriculture for the management of soils, crops, and pests; urban planning; disaster monitoring, etc. However, for these maps to achieve their full potential, it is important to engage in periodic monitoring and analysis of multi-temporal changes. In this context, very high resolution (VHR) satellite-based optical, infrared, and radar imaging instruments provide reliable information to implement spatially-based conservation actions. Moreover, they enable observations of parameters of our environment at greater broader spatial and finer temporal scales than those allowed through field observation alone. In this sense, recent very high resolution satellite technologies and image processing algorithms present the opportunity to develop quantitative techniques that have the potential to improve upon traditional techniques in terms of cost, mapping fidelity, and objectivity. Typical applications include multi-temporal classification, recognition and tracking of specific patterns, multisensor data fusion, analysis of land/marine ecosystem processes and environment monitoring, etc. This book aims to collect new developments, methodologies, and applications of very high resolution satellite data for remote sensing. The works selected provide to the research community the most recent advances on all aspects of VHR satellite remote sensing.
very high-resolution Pléiades imagery --- surface convergence --- data augmentation --- acquisition geometry --- SVM classification --- urban water mapping --- beaver dam analogue --- agriculture parcel segmentation --- morphological building index --- airborne hypespectral imagery --- sunglint correction --- water index --- over-segmentation index (OSI) --- High-resolution satellite imagery --- multi-resolution segmentation (MRS) --- GaoFen-2 (GF-2) --- benthic mapping --- scene classification --- greenhouse extraction --- edge constraint --- Deformable CNN --- built-up areas extraction --- ultra-dense connection --- seagrass --- beaver mimicry --- forested mountain --- natural hazards --- remote sensing --- dimensionality reduction techniques --- road extraction --- landslide monitoring --- Slumgullion landslide --- synthetic aperture radar --- building detection --- Worldview-2 --- saliency index --- under-segmentation index (USI) --- texture analysis --- fast marching method --- video satellite --- CNN --- capsule --- super-resolution --- feature distillation --- shadow detection --- PrimaryCaps --- semiautomatic --- compensation unit --- superpixels --- riparian --- QuickBird --- submesoscale --- linear unmixing --- accuracy assessment --- composite error index (CEI) --- cyanobacteria --- local feature points --- Faster R-CNN --- occluded object detection --- error index of total area (ETA) --- large displacements --- threshold stability --- remote sensing imagery --- water column correction --- canopy height model --- spiral eddy --- sub-pixel offset tracking --- consensus --- stream restoration --- western Baltic Sea --- Worldview --- very high-resolution image --- CapsNet --- atmospheric correction
Listing 1 - 2 of 2 |
Sort by
|