Narrow your search
Listing 1 - 10 of 12 << page
of 2
>>
Sort by

Book
Notions de physio-pathologie humaine
Author:
Year: 1943 Publisher: Paris Liége Masson H. Vaillant-Carmanne

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Notions de physio-pathologie humaine
Author:
Year: 1942 Publisher: Liége H. Vaillant-Carmanne

Loading...
Export citation

Choose an application

Bookmark

Abstract

Biominerals
Authors: ---
ISBN: 0849352800 Year: 1990 Publisher: Boca Raton ; Ann Arbor ; Boston : CRC Press, Inc.,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book provides a comprehensive analysis of biominerals, in particular phosphates and carbonates of calcium. The book begins with a discussion of the theories of solid state chemistry and thermodynamics of ionic solid solutions and applies these theories to show how physiological constituents like sodium, magnesium, carbonate, chloride, fluoride, lead, or strontium influence the formation, stability, and solubility of calcium phosphates. The results of this discussion are then applied to a critical evaluation of data regarding minerals in bone, dentin, and tooth enamel, their formation during growth and turn-over, their stability under physiological conditions and their breakdown under pathological conditions. These principles are also applied to pathological calcifications such as renal calculi, arterial wall calcifications, chondrocalcinosis, dental calculus and salivary stones. A similar approach is used as the authors discuss carbonations such as calcite, dolomite, and aragonite. The book also includes an extensive analysis of the advantageous effects of magnesium supplementation. The wealth of knowledge in this extensive treatise of biominerals is valuable to medical, dental and ecological biologists, as well as scientists and clinicians in the fields of osteoporosis, bone diseases, caries, renal stone disease, parodontology and nutrition.


Periodical
Experimental biology and medicine
Author:
ISSN: 15353702 15353699 Year: 1903 Publisher: Maywood Malden Society Blackwell


Book
Grafting as a Sustainable Means for Securing Yield Stability and Quality in Vegetable Crops
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Vegetable growers around the world only collect, on average, half of the yield they would obtain under optimal conditions, known as yield potential. It is estimated that 60–70% of the yield gap is attributable to abiotic factors such as salinity, drought, suboptimal temperatures, nutritional deficiencies, flooding, waterlogging, heavy metals contamination, adverse soil pH and organic pollutants, while the remaining 30–40% is due to biotic factors, especially soilborne pathogens, foliar pathogens, arthropods and weeds. Under climate change forecasts, the pressure of biotic/abiotic stressors on yield is expected to rise and challenge further global food security. To meet global demand, several solutions have been proposed, focusing on the breeding of varieties with greater yield potential, but this one-size-fits-all solution leads to limited benefits. In order to overcome the current situation, grafting of elite scion varieties onto vigorous rootstock varieties has been suggested as one of the most promising drives towards further yield stability. Specifically, the implementation of suitable rootstock × scion × environment combinations in Solanaceous (tomato, eggplant, pepper) and Cucurbitaceous (melon, watermelon, melon) high-value crops represents an untapped opportunity to secure yield stability and reliability under biotic/abiotic stresses. This Special Issue invites Original Research, Technology Reports, Methods, Opinions, Perspectives, Invited Reviews and Mini Reviews dissecting grafting as a sustainable agro technology for enhancing tolerance to abiotic stresses and reducing disease damage. In addition, the following are of interest: potential contributions dealing with genetic resources for rootstock breeding, practices and technologies of rootstock breeding, and rootstock–scion signaling, as well as the physiological and molecular mechanisms underlying graft compatibility. In addition, the effect of grafting on vegetable quality, practical applications and nursery management of grafted seedlings and specialty crops (e.g. artichoke and bean) will be considered within the general scope of the Special Issue. We highly believe that this compilation of high standard scientific papers on the principles and practices of vegetable grafting will foster discussions within this important field.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- tomato grafting --- splice grafting technique --- graft angle --- random diameter --- wild eggplant relative --- interspecific hybrid --- scion/rootstock combination --- plant vigour --- yield --- fruit quality attributes --- cucumber --- grafting techniques --- rootstock-scion --- soil-borne disease --- resistant --- tolerant crop growth --- fruit yield --- fruit quality --- LED --- PPFD --- PsaA --- PsbA --- Western Blot --- Cucumis melo L. --- arsenic --- grafting --- translocation --- bioaccumulation --- agricultural robot --- automated grafting --- agricultural machinery --- Tomato grafting --- salinity tolerance --- rootstock --- physio-biochemical mechanisms --- Solanum lycopresicum L. --- vegetable grafting --- Solanum melongena L. --- grafting combinations --- arbuscular micorrhizal fungi --- yield traits --- NUE --- mineral profile --- functional properties --- NaCl --- Citrullus vulgaris Schrad --- Luffa cylindrica Mill --- C. maxima Duch. × C. moschata Duch. --- seedlings --- morpho-physiological traits --- solanaceae --- cucurbitaceae --- defense mechanisms --- soilborne pathogen --- genetic resistance --- microbial communities --- soil/root interface --- reduced irrigation --- rootstocks --- leaf gas exchange --- Citrullus lanatus (Thunb) Matsum and Nakai --- functional quality --- lycopene --- storage --- sugars --- texture --- eggplant grafting --- sensory evaluation --- Brassicaceae --- growth --- mineral content --- photosynthesis --- taproot --- n/a


Book
Grafting as a Sustainable Means for Securing Yield Stability and Quality in Vegetable Crops
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Vegetable growers around the world only collect, on average, half of the yield they would obtain under optimal conditions, known as yield potential. It is estimated that 60–70% of the yield gap is attributable to abiotic factors such as salinity, drought, suboptimal temperatures, nutritional deficiencies, flooding, waterlogging, heavy metals contamination, adverse soil pH and organic pollutants, while the remaining 30–40% is due to biotic factors, especially soilborne pathogens, foliar pathogens, arthropods and weeds. Under climate change forecasts, the pressure of biotic/abiotic stressors on yield is expected to rise and challenge further global food security. To meet global demand, several solutions have been proposed, focusing on the breeding of varieties with greater yield potential, but this one-size-fits-all solution leads to limited benefits. In order to overcome the current situation, grafting of elite scion varieties onto vigorous rootstock varieties has been suggested as one of the most promising drives towards further yield stability. Specifically, the implementation of suitable rootstock × scion × environment combinations in Solanaceous (tomato, eggplant, pepper) and Cucurbitaceous (melon, watermelon, melon) high-value crops represents an untapped opportunity to secure yield stability and reliability under biotic/abiotic stresses. This Special Issue invites Original Research, Technology Reports, Methods, Opinions, Perspectives, Invited Reviews and Mini Reviews dissecting grafting as a sustainable agro technology for enhancing tolerance to abiotic stresses and reducing disease damage. In addition, the following are of interest: potential contributions dealing with genetic resources for rootstock breeding, practices and technologies of rootstock breeding, and rootstock–scion signaling, as well as the physiological and molecular mechanisms underlying graft compatibility. In addition, the effect of grafting on vegetable quality, practical applications and nursery management of grafted seedlings and specialty crops (e.g. artichoke and bean) will be considered within the general scope of the Special Issue. We highly believe that this compilation of high standard scientific papers on the principles and practices of vegetable grafting will foster discussions within this important field.

Keywords

tomato grafting --- splice grafting technique --- graft angle --- random diameter --- wild eggplant relative --- interspecific hybrid --- scion/rootstock combination --- plant vigour --- yield --- fruit quality attributes --- cucumber --- grafting techniques --- rootstock-scion --- soil-borne disease --- resistant --- tolerant crop growth --- fruit yield --- fruit quality --- LED --- PPFD --- PsaA --- PsbA --- Western Blot --- Cucumis melo L. --- arsenic --- grafting --- translocation --- bioaccumulation --- agricultural robot --- automated grafting --- agricultural machinery --- Tomato grafting --- salinity tolerance --- rootstock --- physio-biochemical mechanisms --- Solanum lycopresicum L. --- vegetable grafting --- Solanum melongena L. --- grafting combinations --- arbuscular micorrhizal fungi --- yield traits --- NUE --- mineral profile --- functional properties --- NaCl --- Citrullus vulgaris Schrad --- Luffa cylindrica Mill --- C. maxima Duch. × C. moschata Duch. --- seedlings --- morpho-physiological traits --- solanaceae --- cucurbitaceae --- defense mechanisms --- soilborne pathogen --- genetic resistance --- microbial communities --- soil/root interface --- reduced irrigation --- rootstocks --- leaf gas exchange --- Citrullus lanatus (Thunb) Matsum and Nakai --- functional quality --- lycopene --- storage --- sugars --- texture --- eggplant grafting --- sensory evaluation --- Brassicaceae --- growth --- mineral content --- photosynthesis --- taproot --- n/a


Book
Grafting as a Sustainable Means for Securing Yield Stability and Quality in Vegetable Crops
Authors: --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Vegetable growers around the world only collect, on average, half of the yield they would obtain under optimal conditions, known as yield potential. It is estimated that 60–70% of the yield gap is attributable to abiotic factors such as salinity, drought, suboptimal temperatures, nutritional deficiencies, flooding, waterlogging, heavy metals contamination, adverse soil pH and organic pollutants, while the remaining 30–40% is due to biotic factors, especially soilborne pathogens, foliar pathogens, arthropods and weeds. Under climate change forecasts, the pressure of biotic/abiotic stressors on yield is expected to rise and challenge further global food security. To meet global demand, several solutions have been proposed, focusing on the breeding of varieties with greater yield potential, but this one-size-fits-all solution leads to limited benefits. In order to overcome the current situation, grafting of elite scion varieties onto vigorous rootstock varieties has been suggested as one of the most promising drives towards further yield stability. Specifically, the implementation of suitable rootstock × scion × environment combinations in Solanaceous (tomato, eggplant, pepper) and Cucurbitaceous (melon, watermelon, melon) high-value crops represents an untapped opportunity to secure yield stability and reliability under biotic/abiotic stresses. This Special Issue invites Original Research, Technology Reports, Methods, Opinions, Perspectives, Invited Reviews and Mini Reviews dissecting grafting as a sustainable agro technology for enhancing tolerance to abiotic stresses and reducing disease damage. In addition, the following are of interest: potential contributions dealing with genetic resources for rootstock breeding, practices and technologies of rootstock breeding, and rootstock–scion signaling, as well as the physiological and molecular mechanisms underlying graft compatibility. In addition, the effect of grafting on vegetable quality, practical applications and nursery management of grafted seedlings and specialty crops (e.g. artichoke and bean) will be considered within the general scope of the Special Issue. We highly believe that this compilation of high standard scientific papers on the principles and practices of vegetable grafting will foster discussions within this important field.

Keywords

Research & information: general --- Biology, life sciences --- Technology, engineering, agriculture --- tomato grafting --- splice grafting technique --- graft angle --- random diameter --- wild eggplant relative --- interspecific hybrid --- scion/rootstock combination --- plant vigour --- yield --- fruit quality attributes --- cucumber --- grafting techniques --- rootstock-scion --- soil-borne disease --- resistant --- tolerant crop growth --- fruit yield --- fruit quality --- LED --- PPFD --- PsaA --- PsbA --- Western Blot --- Cucumis melo L. --- arsenic --- grafting --- translocation --- bioaccumulation --- agricultural robot --- automated grafting --- agricultural machinery --- Tomato grafting --- salinity tolerance --- rootstock --- physio-biochemical mechanisms --- Solanum lycopresicum L. --- vegetable grafting --- Solanum melongena L. --- grafting combinations --- arbuscular micorrhizal fungi --- yield traits --- NUE --- mineral profile --- functional properties --- NaCl --- Citrullus vulgaris Schrad --- Luffa cylindrica Mill --- C. maxima Duch. × C. moschata Duch. --- seedlings --- morpho-physiological traits --- solanaceae --- cucurbitaceae --- defense mechanisms --- soilborne pathogen --- genetic resistance --- microbial communities --- soil/root interface --- reduced irrigation --- rootstocks --- leaf gas exchange --- Citrullus lanatus (Thunb) Matsum and Nakai --- functional quality --- lycopene --- storage --- sugars --- texture --- eggplant grafting --- sensory evaluation --- Brassicaceae --- growth --- mineral content --- photosynthesis --- taproot --- tomato grafting --- splice grafting technique --- graft angle --- random diameter --- wild eggplant relative --- interspecific hybrid --- scion/rootstock combination --- plant vigour --- yield --- fruit quality attributes --- cucumber --- grafting techniques --- rootstock-scion --- soil-borne disease --- resistant --- tolerant crop growth --- fruit yield --- fruit quality --- LED --- PPFD --- PsaA --- PsbA --- Western Blot --- Cucumis melo L. --- arsenic --- grafting --- translocation --- bioaccumulation --- agricultural robot --- automated grafting --- agricultural machinery --- Tomato grafting --- salinity tolerance --- rootstock --- physio-biochemical mechanisms --- Solanum lycopresicum L. --- vegetable grafting --- Solanum melongena L. --- grafting combinations --- arbuscular micorrhizal fungi --- yield traits --- NUE --- mineral profile --- functional properties --- NaCl --- Citrullus vulgaris Schrad --- Luffa cylindrica Mill --- C. maxima Duch. × C. moschata Duch. --- seedlings --- morpho-physiological traits --- solanaceae --- cucurbitaceae --- defense mechanisms --- soilborne pathogen --- genetic resistance --- microbial communities --- soil/root interface --- reduced irrigation --- rootstocks --- leaf gas exchange --- Citrullus lanatus (Thunb) Matsum and Nakai --- functional quality --- lycopene --- storage --- sugars --- texture --- eggplant grafting --- sensory evaluation --- Brassicaceae --- growth --- mineral content --- photosynthesis --- taproot


Book
Green Technologies : Bridging Conventional Practices and Industry 4.0
Authors: --- ---
Year: 2020 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Green technologies can be identified as key components in Industry 4.0. The scope of this book is to address how conventional green technologies can be a part of smart industries by minimizing waste, maximizing productivity, optimizing the supply chain, or by additive manufacturing. This theme focuses on the scope and challenges of integrating current environmental technologies in future industries. This book, “Green Technologies: Bridging Conventional Practices and Industry 4.0”, aims to incorporate and introduce the advances in green technologies to the cyber-based industries. It is hoped that the novel green technologies presented in this book are useful in assisting the global community in working towards fulfilling the Sustainable Development Goals.

Keywords

History of engineering & technology --- wood flour --- oil adsorption --- superhydrophobic --- superoleophilic --- oil-water separation --- sustainable material --- sachet-water plastic waste --- oil palm empty fruit bunch --- TGA-DSC analysis --- activation energy --- physio-thermal analysis --- co-pyrolysis --- eutrophication --- sugarcane bagasse --- adsorption --- harvest --- biodiesel --- reusability --- Calophyllum inophyllum biodiesel --- palm biodiesel --- engine performance --- exhaust emissions --- alternative fuel --- transesterification --- multiple frequency marine controlled-source electromagnetic technique --- Gaussian process --- uncertainty quantification --- computer experiment, electromagnetic profile estimation --- Malaysia --- Municipal Solid Waste (MSW) --- Waste-to-Energy (WTE) --- sustainability --- technical --- economic --- environmental --- social --- optimization --- P-graph --- municipal solid waste conversion technology --- silicon oxycarbide --- thermal conductivity --- floating plants --- SiOC --- silica --- ammonium-based protic ionic liquids --- density --- thermal expansion coefficient --- viscosity --- thermal stability --- CO2 absorption --- rubber-seed shell --- activated carbon --- CO2 adsorption --- isotherms --- kinetics modeling --- milk --- protein --- liquid biphasic flotation --- dairy waste --- recovery --- Cape gooseberry --- color space selection --- color space combination --- food engineering --- anaerobic digestion --- co-digestion --- wastewater --- biogas production --- methane yield, sludge --- sandwich composite fire --- mechanical responses --- moisture content --- balsa core --- mass loss kinetic --- buckling failure --- liquid biphasic system --- aqueous two-phase system --- aqueous biphasic system --- purification --- separation --- biomolecules --- black soldier fly --- yeast --- fermentation --- larvae --- organic waste --- coconut endosperm waste --- black soldier fly larvae --- lipid --- substrate --- PC/ABS --- carbon black --- electromagnetic shielding effectiveness --- dissipation of electrostatic discharge --- surface resistivity --- wood flour --- oil adsorption --- superhydrophobic --- superoleophilic --- oil-water separation --- sustainable material --- sachet-water plastic waste --- oil palm empty fruit bunch --- TGA-DSC analysis --- activation energy --- physio-thermal analysis --- co-pyrolysis --- eutrophication --- sugarcane bagasse --- adsorption --- harvest --- biodiesel --- reusability --- Calophyllum inophyllum biodiesel --- palm biodiesel --- engine performance --- exhaust emissions --- alternative fuel --- transesterification --- multiple frequency marine controlled-source electromagnetic technique --- Gaussian process --- uncertainty quantification --- computer experiment, electromagnetic profile estimation --- Malaysia --- Municipal Solid Waste (MSW) --- Waste-to-Energy (WTE) --- sustainability --- technical --- economic --- environmental --- social --- optimization --- P-graph --- municipal solid waste conversion technology --- silicon oxycarbide --- thermal conductivity --- floating plants --- SiOC --- silica --- ammonium-based protic ionic liquids --- density --- thermal expansion coefficient --- viscosity --- thermal stability --- CO2 absorption --- rubber-seed shell --- activated carbon --- CO2 adsorption --- isotherms --- kinetics modeling --- milk --- protein --- liquid biphasic flotation --- dairy waste --- recovery --- Cape gooseberry --- color space selection --- color space combination --- food engineering --- anaerobic digestion --- co-digestion --- wastewater --- biogas production --- methane yield, sludge --- sandwich composite fire --- mechanical responses --- moisture content --- balsa core --- mass loss kinetic --- buckling failure --- liquid biphasic system --- aqueous two-phase system --- aqueous biphasic system --- purification --- separation --- biomolecules --- black soldier fly --- yeast --- fermentation --- larvae --- organic waste --- coconut endosperm waste --- black soldier fly larvae --- lipid --- substrate --- PC/ABS --- carbon black --- electromagnetic shielding effectiveness --- dissipation of electrostatic discharge --- surface resistivity

Listing 1 - 10 of 12 << page
of 2
>>
Sort by