Listing 1 - 9 of 9 |
Sort by
|
Choose an application
Choose an application
GASTROINTESTINAL MOTILITY --- ESOPHAGUS --- PERISTALSIS --- GASTROESOPHAGEAL REFLUX --- GALLBLADDER --- ODDI'S SPHINCTER --- PHYSIOLOGY --- GASTROINTESTINAL MOTILITY --- ESOPHAGUS --- PERISTALSIS --- GASTROESOPHAGEAL REFLUX --- GALLBLADDER --- ODDI'S SPHINCTER --- PHYSIOLOGY
Choose an application
Deglutition or a swallow begins as a voluntary act in the oral cavity but proceeds autonomously in the pharynx and esophagus. Bilateral sequenced activation and inhibition of more than 25 pairs of muscles of mouth, pharynx, larynx, and esophagus is required during a swallow. A single swallow elicits peristalsis in the pharynx and esophagus along with relaxation of upper and lower esophageal sphincters. Multiple swallows, at closely spaced time intervals, demonstrate deglutitive inhibition; sphincters remain relaxed during the entire period, but only the last swallow elicits peristalsis. Laryngeal inlet closure or airway protection is very important during swallow. Upper part of the esophagus that includes upper esophageal sphincter is composed of skeletal muscles, middle esophagus is composed of a mixture of skeletal and smooth muscles, and lower esophagus, including lower esophageal sphincter, is composed of smooth muscles. Peristalsis progresses in seamless fashion, despite separate control mechanism, from the skeletal to smooth muscle esophagus. The esophagus's circular and longitudinal muscle layers contract synchronously during peristalsis. Sphincters maintain continuous tone; neuromuscular mechanisms for tonic closure in the upper and lower esophageal sphincters are different. Lower esophageal sphincter transient relaxation, belching mechanism, regurgitation, vomiting, and reflux are mediated via the brain stem.
Pharynx. --- Sphincters. --- Pharyngoesophageal sphincter. --- Esophagogastric junction. --- Esophagus. --- Deglutition. --- Gastrointestinal system. --- Upper Gastrointestinal Tract. --- Esophageal peristalsis --- Lower esophageal sphincter --- Upper esophageal sphincter --- Neural control of peristalsis --- Circular and longitudinal muscle coordination --- Eneteric nervous system --- High resolution manometry --- Transient sphincter relaxation --- Achalasia esophagus --- Deglutition center --- Swallow program generator
Choose an application
Research into gastrointestinal motility has received renewed interest in part due to recent advances in the techniques for measuring the structure and function of gastrointestinal cells, tissue and organs. The integration of this wealth of data into biophysically based computation models can aid in interpretation of experimental and clinical measurements and the refinement of measurement techniques. The contents of this book span multiple scales - from cell, tissue, organ, to whole body and is divided into four broad sections covering: i) gastrointestinal cellular activity and tissue structure; (ii) techniques for measuring, analyzing and visualizing high-resolution extra-cellular recordings; (iii) methods for sensing gastroelectrical activity using non-invasive bio-electro-magnetic fields and for modulating the underlying gastric electrical activity, and finally; (iv) methods for assessing manometric and videographic motility patterns and the application of these data for predicting the flow and mixing behavior of luminal contents by using computational fluid dynamic techniques. This book aims to provide both an overview of historical and existing research techniques as well as to highlight future directions and challenges for the community as a whole. It will be suitable for clinicians to understand the cellular and biophysical underpinnings of gastric emptying, gastroenterologists, surgeons, bioengineers and all scientists with interests in gastrointestinal motility research.
Gastrointestinal system -- Mechanical properties. --- Gastrointestinal system. --- Human Anatomy & Physiology --- Health & Biological Sciences --- Physiology --- Gastrointestinal system --- Motility. --- Gastrointestinal motility --- Motility, Gastrointestinal --- Gastro-intestinal system --- Gastrointestinal tract --- GI tract --- Tract, Gastrointestinal --- Tract, GI --- Human physiology. --- Biomedical engineering. --- Gastroenterology. --- Engineering design. --- Human Physiology. --- Biomedical Engineering. --- Engineering Design. --- Biomechanics --- Digestion --- Peristalsis --- Alimentary canal --- Digestive organs --- Biomedical Engineering and Bioengineering. --- Design, Engineering --- Engineering --- Industrial design --- Strains and stresses --- Internal medicine --- Clinical engineering --- Medical engineering --- Bioengineering --- Biophysics --- Medicine --- Human biology --- Medical sciences --- Human body --- Design --- Diseases --- Gastroenterology .
Choose an application
Neuropathology --- Gastroenterology --- Gastrointestinal system --- Tractus gastro-intestinal --- Motility --- Periodicals --- Motilité --- Périodiques --- Biliary Tract. --- Gastrointestinal Motility. --- Système gastro-intestinal. --- Innervation (Physiologie) --- Motilité intestinale. --- Voies biliaires. --- Innervation --- Innervation. --- Motility. --- Biliary Tract --- Enteric Nervous System --- Intestinal Motility --- Gastrointestinal Motilities --- Intestinal Motilities --- Motilities, Gastrointestinal --- Motilities, Intestinal --- Motility, Gastrointestinal --- Motility, Intestinal --- physiology. --- Chemistry --- Health Sciences --- Biochemistry --- Physiology --- Enteric nervous system --- Biliary System --- Biliary Tree --- System, Biliary --- Tract, Biliary --- Tree, Biliary --- Gastro-intestinal system --- Gastrointestinal tract --- GI tract --- Tract, Gastrointestinal --- Tract, GI --- Gastrointestinal motility --- Gastrointestinal Motility --- physiology --- Biomechanics --- Digestion --- Peristalsis --- Nerves, Peripheral --- Alimentary canal --- Digestive organs --- Gastro-enterologie --- Neuropathologie
Choose an application
Gastroenterology --- Gastrointestinal system --- Gastroenterology. --- Gastrointestinal Diseases. --- Motility --- Innervation --- Innervation. --- Motility. --- Functional Gastrointestinal Disorders --- Gastrointestinal Disorders, Functional --- Cholera Infantum --- Disease, Gastrointestinal --- Diseases, Gastrointestinal --- Disorder, Functional Gastrointestinal --- Disorders, Functional Gastrointestinal --- Functional Gastrointestinal Disorder --- Gastrointestinal Disease --- Gastrointestinal Disorder, Functional --- Infantum, Cholera --- Enteric nervous system --- Gastro-intestinal system --- Gastrointestinal tract --- GI tract --- Tract, Gastrointestinal --- Tract, GI --- Gastrointestinal motility --- Motility, Gastrointestinal --- Gastrointestinal Diseases --- Gastrointestinal Motility --- Enteric Nervous System --- physiopathology --- Enteric Nervous Systems --- Nervous System, Enteric --- Nervous Systems, Enteric --- System, Enteric Nervous --- Systems, Enteric Nervous --- Intestinal Motility --- Gastrointestinal Motilities --- Intestinal Motilities --- Motilities, Gastrointestinal --- Motilities, Intestinal --- Motility, Intestinal --- Biomechanics --- Digestion --- Peristalsis --- Nerves, Peripheral --- Internal medicine --- Digestive organs --- Alimentary canal --- Diseases --- Gastrointestinal Disorders --- Gastrointestinal Disorder --- Gastrointestinal Motil.ity. --- physiopathology.
Choose an application
Over the past four decades, there has been increased attention given to the research of fluid mechanics due to its wide application in industry and phycology. Major advances in the modeling of key topics such Newtonian and non-Newtonian fluids and thin film flows have been made and finally published in the Special Issue of coatings. This is an attempt to edit the Special Issue into a book. Although this book is not a formal textbook, it will definitely be useful for university teachers, research students, industrial researchers and in overcoming the difficulties occurring in the said topic, while dealing with the nonlinear governing equations. For such types of equations, it is often more difficult to find an analytical solution or even a numerical one. This book has successfully handled this challenging job with the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.
Technology: general issues --- Synovial fluid --- coating --- shear-thinning and -thickening models --- mass transport --- asymmetric channel --- analytical solution --- thin film --- spin coating --- rotating disk --- nanoparticles --- Newtonian fluids --- coatings --- curved stretched surface --- nanoliquid --- nonlinear thermal radiation --- entropy generation --- Reiner-Phillipoff fluid --- time-dependent --- thermal radiation --- homotopy analysis method (HAM) --- thin film of micropolar fluid --- porous medium --- thermophoresis --- skin friction --- Nusselt number and Sherwood number --- variable thickness of the liquid film --- HAM --- optical fiber coating --- double-layer coating --- viscoelastic PTT fluid --- analytic and numerical simulations --- thin film casson nanofluid --- SWCNTs and MWCNTs --- stretching cylinder --- MHD --- unsteady flow and heat transfer --- nanofluid --- Blasius–Rayleigh–Stokes variable --- dual solutions --- numerical solution --- correlation expressions --- Casson fluid --- condensation film --- heat generation/consumption --- thin liquid film flow --- carbon nanotubes --- Cattaneo-Christov heat flux --- variable heat source/sink --- heated bi-phase flow --- couple stress fluid --- lubrication effects --- slippery walls --- magnetohydrodynamics --- Darcy-Forchheimer nanofluid --- nonlinear extending disc --- variable thin layer --- HAM and numerical method --- peristaltic flow --- an endoscope --- variable viscosity --- Adomian solutions --- different wave forms --- pseudo-similarity variable --- micropolar nanofluid --- darcy forchheimer model --- MHD flow --- triple solution --- stability analysis --- APCM --- Caputo derivative --- unsteady flow --- shrinking surface --- Williamson model --- peristaltic pumping --- convective boundary conditions --- analytic solutions --- second order slip --- double stratification --- Cattaneo–Christov heat flux --- variable thermal conductivity --- Williamson nanofluid --- velocity second slip --- wave forms --- exact solutions --- magnetic field --- heat and mass transfer --- Hall current --- homogeneous–heterogeneous reactions --- viscoelastic fluids --- heterogeneous–homogeneous reactions --- mixed convective flow --- binary chemical reaction --- arrhenius activation energy --- gas-liquid coatings --- bubbles --- two-fluid model --- phase distribution --- HPM --- double diffusion --- curved channel --- compliant walls --- analytical solutions --- third grade fluid model --- hybrid nanofluid --- induced magnetic field --- mixed convection --- heat generation --- peristalsis --- cilia beating --- Non-Newtonian --- Bejan number --- Jeffrey fluid model --- eccentric annuli --- droplet impact modelling --- impedance analysis --- rain erosion --- ultrasound measurements --- viscoelastic modelling --- wind turbine blades --- computational modelling --- rain erosion testing --- viscoelastic characterization --- development and characterization of coatings --- applications of thin films --- nanostructured materials --- surfaces and interfaces --- applications of multiphase fluids --- mathematical modeling on biological applications --- electronics --- magnetics and magneto-optics
Choose an application
Over the past four decades, there has been increased attention given to the research of fluid mechanics due to its wide application in industry and phycology. Major advances in the modeling of key topics such Newtonian and non-Newtonian fluids and thin film flows have been made and finally published in the Special Issue of coatings. This is an attempt to edit the Special Issue into a book. Although this book is not a formal textbook, it will definitely be useful for university teachers, research students, industrial researchers and in overcoming the difficulties occurring in the said topic, while dealing with the nonlinear governing equations. For such types of equations, it is often more difficult to find an analytical solution or even a numerical one. This book has successfully handled this challenging job with the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.
Synovial fluid --- coating --- shear-thinning and -thickening models --- mass transport --- asymmetric channel --- analytical solution --- thin film --- spin coating --- rotating disk --- nanoparticles --- Newtonian fluids --- coatings --- curved stretched surface --- nanoliquid --- nonlinear thermal radiation --- entropy generation --- Reiner-Phillipoff fluid --- time-dependent --- thermal radiation --- homotopy analysis method (HAM) --- thin film of micropolar fluid --- porous medium --- thermophoresis --- skin friction --- Nusselt number and Sherwood number --- variable thickness of the liquid film --- HAM --- optical fiber coating --- double-layer coating --- viscoelastic PTT fluid --- analytic and numerical simulations --- thin film casson nanofluid --- SWCNTs and MWCNTs --- stretching cylinder --- MHD --- unsteady flow and heat transfer --- nanofluid --- Blasius–Rayleigh–Stokes variable --- dual solutions --- numerical solution --- correlation expressions --- Casson fluid --- condensation film --- heat generation/consumption --- thin liquid film flow --- carbon nanotubes --- Cattaneo-Christov heat flux --- variable heat source/sink --- heated bi-phase flow --- couple stress fluid --- lubrication effects --- slippery walls --- magnetohydrodynamics --- Darcy-Forchheimer nanofluid --- nonlinear extending disc --- variable thin layer --- HAM and numerical method --- peristaltic flow --- an endoscope --- variable viscosity --- Adomian solutions --- different wave forms --- pseudo-similarity variable --- micropolar nanofluid --- darcy forchheimer model --- MHD flow --- triple solution --- stability analysis --- APCM --- Caputo derivative --- unsteady flow --- shrinking surface --- Williamson model --- peristaltic pumping --- convective boundary conditions --- analytic solutions --- second order slip --- double stratification --- Cattaneo–Christov heat flux --- variable thermal conductivity --- Williamson nanofluid --- velocity second slip --- wave forms --- exact solutions --- magnetic field --- heat and mass transfer --- Hall current --- homogeneous–heterogeneous reactions --- viscoelastic fluids --- heterogeneous–homogeneous reactions --- mixed convective flow --- binary chemical reaction --- arrhenius activation energy --- gas-liquid coatings --- bubbles --- two-fluid model --- phase distribution --- HPM --- double diffusion --- curved channel --- compliant walls --- analytical solutions --- third grade fluid model --- hybrid nanofluid --- induced magnetic field --- mixed convection --- heat generation --- peristalsis --- cilia beating --- Non-Newtonian --- Bejan number --- Jeffrey fluid model --- eccentric annuli --- droplet impact modelling --- impedance analysis --- rain erosion --- ultrasound measurements --- viscoelastic modelling --- wind turbine blades --- computational modelling --- rain erosion testing --- viscoelastic characterization --- development and characterization of coatings --- applications of thin films --- nanostructured materials --- surfaces and interfaces --- applications of multiphase fluids --- mathematical modeling on biological applications --- electronics --- magnetics and magneto-optics
Choose an application
Over the past four decades, there has been increased attention given to the research of fluid mechanics due to its wide application in industry and phycology. Major advances in the modeling of key topics such Newtonian and non-Newtonian fluids and thin film flows have been made and finally published in the Special Issue of coatings. This is an attempt to edit the Special Issue into a book. Although this book is not a formal textbook, it will definitely be useful for university teachers, research students, industrial researchers and in overcoming the difficulties occurring in the said topic, while dealing with the nonlinear governing equations. For such types of equations, it is often more difficult to find an analytical solution or even a numerical one. This book has successfully handled this challenging job with the latest techniques. In addition, the findings of the simulation are logically realistic and meet the standard of sufficient scientific value.
Technology: general issues --- Synovial fluid --- coating --- shear-thinning and -thickening models --- mass transport --- asymmetric channel --- analytical solution --- thin film --- spin coating --- rotating disk --- nanoparticles --- Newtonian fluids --- coatings --- curved stretched surface --- nanoliquid --- nonlinear thermal radiation --- entropy generation --- Reiner-Phillipoff fluid --- time-dependent --- thermal radiation --- homotopy analysis method (HAM) --- thin film of micropolar fluid --- porous medium --- thermophoresis --- skin friction --- Nusselt number and Sherwood number --- variable thickness of the liquid film --- HAM --- optical fiber coating --- double-layer coating --- viscoelastic PTT fluid --- analytic and numerical simulations --- thin film casson nanofluid --- SWCNTs and MWCNTs --- stretching cylinder --- MHD --- unsteady flow and heat transfer --- nanofluid --- Blasius–Rayleigh–Stokes variable --- dual solutions --- numerical solution --- correlation expressions --- Casson fluid --- condensation film --- heat generation/consumption --- thin liquid film flow --- carbon nanotubes --- Cattaneo-Christov heat flux --- variable heat source/sink --- heated bi-phase flow --- couple stress fluid --- lubrication effects --- slippery walls --- magnetohydrodynamics --- Darcy-Forchheimer nanofluid --- nonlinear extending disc --- variable thin layer --- HAM and numerical method --- peristaltic flow --- an endoscope --- variable viscosity --- Adomian solutions --- different wave forms --- pseudo-similarity variable --- micropolar nanofluid --- darcy forchheimer model --- MHD flow --- triple solution --- stability analysis --- APCM --- Caputo derivative --- unsteady flow --- shrinking surface --- Williamson model --- peristaltic pumping --- convective boundary conditions --- analytic solutions --- second order slip --- double stratification --- Cattaneo–Christov heat flux --- variable thermal conductivity --- Williamson nanofluid --- velocity second slip --- wave forms --- exact solutions --- magnetic field --- heat and mass transfer --- Hall current --- Cattaneo-Christov heat flux --- homogeneous–heterogeneous reactions --- viscoelastic fluids --- heterogeneous–homogeneous reactions --- mixed convective flow --- binary chemical reaction --- arrhenius activation energy --- gas-liquid coatings --- bubbles --- two-fluid model --- phase distribution --- HPM --- double diffusion --- curved channel --- compliant walls --- analytical solutions --- third grade fluid model --- hybrid nanofluid --- induced magnetic field --- mixed convection --- heat generation --- peristalsis --- cilia beating --- Non-Newtonian --- Bejan number --- Jeffrey fluid model --- eccentric annuli --- droplet impact modelling --- impedance analysis --- rain erosion --- ultrasound measurements --- viscoelastic modelling --- wind turbine blades --- computational modelling --- rain erosion testing --- viscoelastic characterization --- development and characterization of coatings --- applications of thin films --- nanostructured materials --- surfaces and interfaces --- applications of multiphase fluids --- mathematical modeling on biological applications --- electronics --- magnetics and magneto-optics --- Synovial fluid --- coating --- shear-thinning and -thickening models --- mass transport --- asymmetric channel --- analytical solution --- thin film --- spin coating --- rotating disk --- nanoparticles --- Newtonian fluids --- coatings --- curved stretched surface --- nanoliquid --- nonlinear thermal radiation --- entropy generation --- Reiner-Phillipoff fluid --- time-dependent --- thermal radiation --- homotopy analysis method (HAM) --- thin film of micropolar fluid --- porous medium --- thermophoresis --- skin friction --- Nusselt number and Sherwood number --- variable thickness of the liquid film --- HAM --- optical fiber coating --- double-layer coating --- viscoelastic PTT fluid --- analytic and numerical simulations --- thin film casson nanofluid --- SWCNTs and MWCNTs --- stretching cylinder --- MHD --- unsteady flow and heat transfer --- nanofluid --- Blasius–Rayleigh–Stokes variable --- dual solutions --- numerical solution --- correlation expressions --- Casson fluid --- condensation film --- heat generation/consumption --- thin liquid film flow --- carbon nanotubes --- Cattaneo-Christov heat flux --- variable heat source/sink --- heated bi-phase flow --- couple stress fluid --- lubrication effects --- slippery walls --- magnetohydrodynamics --- Darcy-Forchheimer nanofluid --- nonlinear extending disc --- variable thin layer --- HAM and numerical method --- peristaltic flow --- an endoscope --- variable viscosity --- Adomian solutions --- different wave forms --- pseudo-similarity variable --- micropolar nanofluid --- darcy forchheimer model --- MHD flow --- triple solution --- stability analysis --- APCM --- Caputo derivative --- unsteady flow --- shrinking surface --- Williamson model --- peristaltic pumping --- convective boundary conditions --- analytic solutions --- second order slip --- double stratification --- Cattaneo–Christov heat flux --- variable thermal conductivity --- Williamson nanofluid --- velocity second slip --- wave forms --- exact solutions --- magnetic field --- heat and mass transfer --- Hall current --- Cattaneo-Christov heat flux --- homogeneous–heterogeneous reactions --- viscoelastic fluids --- heterogeneous–homogeneous reactions --- mixed convective flow --- binary chemical reaction --- arrhenius activation energy --- gas-liquid coatings --- bubbles --- two-fluid model --- phase distribution --- HPM --- double diffusion --- curved channel --- compliant walls --- analytical solutions --- third grade fluid model --- hybrid nanofluid --- induced magnetic field --- mixed convection --- heat generation --- peristalsis --- cilia beating --- Non-Newtonian --- Bejan number --- Jeffrey fluid model --- eccentric annuli --- droplet impact modelling --- impedance analysis --- rain erosion --- ultrasound measurements --- viscoelastic modelling --- wind turbine blades --- computational modelling --- rain erosion testing --- viscoelastic characterization --- development and characterization of coatings --- applications of thin films --- nanostructured materials --- surfaces and interfaces --- applications of multiphase fluids --- mathematical modeling on biological applications --- electronics --- magnetics and magneto-optics
Listing 1 - 9 of 9 |
Sort by
|