Narrow your search
Listing 1 - 10 of 12 << page
of 2
>>
Sort by

Dissertation
The performance of the Real Estate Mutual Fund industry: an empirical examination from 2003 to 2015
Authors: --- --- ---
Year: 2016 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Thanks to the real estate industry’s strong growth since the early 2000s, financial investors have shown increased interest in it. This has paved the way for the quick development of specialized investment vehicles and especially Real Estate Mutual Funds. This is precisely what led to the writing of this paper.&#13;As a first step, it aims at describing the economic environment that surrounds this specific industry between 2003 and 2015. It provides information and details about the main drivers of the expansion of the US housing bubble. It further illustrates the disastrous consequences of the bubble’s rupture on the global economy and the way financial markets recovered over the next years.&#13;In a second step, it analyses the past performances of global REMF during the pre-crisis (i.e. 2003-2006), crisis (i.e. 2007-2009) and post-crisis (2010-2015) periods. While REMF market showed strong signs of inefficiencies throughout the 1990s, the paper demonstrated standardization in the industry, as the results were fairly similar to those obtained by the broad mutual fund industry. In fact, managers were no longer able to consistently outperform the real estate benchmark over the period.&#13;Following that, the paper used regression models to highlight the factors (i.e. total expense ratio, turnover ratio) impacting the REMF alphas. It found that REMF with the lowest TER and turnover ratio tend to produce better performances. However, the relatively low r-squared suggested that no general conclusions could be drawn from this analysis,&#13;Finally, it provides a cursory analysis of the existing relationship between the stock market and the real estate mutual fund industry at the global level. With the exception of the 2000-2006 period, which featured contrasting trends in the economy (i.e. the quick expansion of the housing bubble and the recovery of the stock market), it found a strong correlation between them. This in turn suggested the low diversification benefits from the real estate industry, when added to a world stock portfolio.


Book
Computer architecture performance evaluation methods
Author:
ISBN: 1608454673 9781608454679 9781608454686 1608454681 Year: 2010 Publisher: San Rafael, Calif. (1537 Fourth Street, San Rafael, CA 94901 USA) Morgan & Claypool

Loading...
Export citation

Choose an application

Bookmark

Abstract

Performance evaluation is at the foundation of computer architecture research and development. Contemporary microprocessors are so complex that architects cannot design systems based on intuition and simple models only. Adequate performance evaluation methods are absolutely crucial to steer the research and development process in the right direction. However, rigorous performance evaluation is non-trivial as there are multiple aspects to performance evaluation, such as picking workloads, selecting an appropriate modeling or simulation approach, running the model and interpreting the results using meaningful metrics. Each of these aspects is equally important and a performance evaluation method that lacks rigor in any of these crucial aspects may lead to inaccurate performance data and may drive research and development in a wrong direction. The goal of this book is to present an overview of the current state-of-the-art in computer architecture performance evaluation, with a special emphasis on methods for exploring processor architectures. The book focuses on fundamental concepts and ideas for obtaining accurate performance data. The book covers various topics in performance evaluation, ranging from performance metrics, to workload selection, to various modeling approaches including mechanistic and empirical modeling. And because simulation is by far the most prevalent modeling technique, more than half the book's content is devoted to simulation. The book provides an overview of the simulation techniques in the computer designer's toolbox, followed by various simulation acceleration techniques including sampled simulation, statistical simulation, parallel simulation and hardware-accelerated simulation.


Book
Customers inside, customers outside : designing and succeeding with enterprise customer-centricity concepts, practices, and applications
Author:
ISBN: 1606498975 Year: 2014 Publisher: New York, New York (222 East 46th Street, New York, NY 10017) : Business Expert Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Over the past several years, leading companies have entered a period of marketing and operational convergence, or intersection. During this time, those of us who actively follow, and consult in, such trends are witnessing significant multichannel media application (and resultant omnichannel application by consumers), along with more effective and pervasive customer data gathering, analysis, and application, a stronger enterprise-wide focus on customers, and recognition by senior executives that a dedicated high-level function, supported by a team and sufficient resources, is needed to lead and manage the customer experience. One of my business heroes is direct marketing pioneer, adman Les Wunderman. In the late 1960s, speaking about the future of interactive media, customer relationships, and customer experiences, he predicted many of the realities and challenges we are seeing today. The past decade has brought profound changes to consumer decision making and approaches to customer experience and marketing. Significant advances in communication technology are, at the same time, impacting all marketers and enterprises and in a big way. Marketers have to adjust their budgeting, relationship building, omnichannel influence and personalization methods, "Big Data" generation, analytics, and microsegmentation--all while attempting to hit the moving target that is their continuously transitioning customer base.


Book
Advanced Computational Methods for Oncological Image Analysis
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

[Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.]


Book
Advanced Computational Methods for Oncological Image Analysis
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

[Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.]


Book
Advanced Computational Methods for Oncological Image Analysis
Authors: --- --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

[Cancer is the second most common cause of death worldwide and encompasses highly variable clinical and biological scenarios. Some of the current clinical challenges are (i) early diagnosis of the disease and (ii) precision medicine, which allows for treatments targeted to specific clinical cases. The ultimate goal is to optimize the clinical workflow by combining accurate diagnosis with the most suitable therapies. Toward this, large-scale machine learning research can define associations among clinical, imaging, and multi-omics studies, making it possible to provide reliable diagnostic and prognostic biomarkers for precision oncology. Such reliable computer-assisted methods (i.e., artificial intelligence) together with clinicians’ unique knowledge can be used to properly handle typical issues in evaluation/quantification procedures (i.e., operator dependence and time-consuming tasks). These technical advances can significantly improve result repeatability in disease diagnosis and guide toward appropriate cancer care. Indeed, the need to apply machine learning and computational intelligence techniques has steadily increased to effectively perform image processing operations—such as segmentation, co-registration, classification, and dimensionality reduction—and multi-omics data integration.]

Keywords

Medicine --- melanoma detection --- deep learning --- transfer learning --- ensemble classification --- 3D-CNN --- immunotherapy --- radiomics --- self-attention --- breast imaging --- microwave imaging --- image reconstruction --- segmentation --- unsupervised machine learning --- k-means clustering --- Kolmogorov-Smirnov hypothesis test --- statistical inference --- performance metrics --- contrast source inversion --- brain tumor segmentation --- magnetic resonance imaging --- survey --- brain MRI image --- tumor region --- skull stripping --- region growing --- U-Net --- BRATS dataset --- incoherent imaging --- clutter rejection --- breast cancer detection --- MRgFUS --- proton resonance frequency shift --- temperature variations --- referenceless thermometry --- RBF neural networks --- interferometric optical fibers --- breast cancer --- risk assessment --- machine learning --- texture --- mammography --- medical imaging --- imaging biomarkers --- bone scintigraphy --- prostate cancer --- semisupervised classification --- false positives reduction --- computer-aided detection --- breast mass --- mass detection --- mass segmentation --- Mask R-CNN --- dataset partition --- brain tumor --- classification --- shallow machine learning --- breast cancer diagnosis --- Wisconsin Breast Cancer Dataset --- feature selection --- dimensionality reduction --- principal component analysis --- ensemble method --- melanoma detection --- deep learning --- transfer learning --- ensemble classification --- 3D-CNN --- immunotherapy --- radiomics --- self-attention --- breast imaging --- microwave imaging --- image reconstruction --- segmentation --- unsupervised machine learning --- k-means clustering --- Kolmogorov-Smirnov hypothesis test --- statistical inference --- performance metrics --- contrast source inversion --- brain tumor segmentation --- magnetic resonance imaging --- survey --- brain MRI image --- tumor region --- skull stripping --- region growing --- U-Net --- BRATS dataset --- incoherent imaging --- clutter rejection --- breast cancer detection --- MRgFUS --- proton resonance frequency shift --- temperature variations --- referenceless thermometry --- RBF neural networks --- interferometric optical fibers --- breast cancer --- risk assessment --- machine learning --- texture --- mammography --- medical imaging --- imaging biomarkers --- bone scintigraphy --- prostate cancer --- semisupervised classification --- false positives reduction --- computer-aided detection --- breast mass --- mass detection --- mass segmentation --- Mask R-CNN --- dataset partition --- brain tumor --- classification --- shallow machine learning --- breast cancer diagnosis --- Wisconsin Breast Cancer Dataset --- feature selection --- dimensionality reduction --- principal component analysis --- ensemble method


Book
Evolutionary Algorithms in Engineering Design Optimization
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Evolutionary algorithms (EAs) are population-based global optimizers, which, due to their characteristics, have allowed us to solve, in a straightforward way, many real world optimization problems in the last three decades, particularly in engineering fields. Their main advantages are the following: they do not require any requisite to the objective/fitness evaluation function (continuity, derivability, convexity, etc.); they are not limited by the appearance of discrete and/or mixed variables or by the requirement of uncertainty quantification in the search. Moreover, they can deal with more than one objective function simultaneously through the use of evolutionary multi-objective optimization algorithms. This set of advantages, and the continuously increased computing capability of modern computers, has enhanced their application in research and industry. From the application point of view, in this Special Issue, all engineering fields are welcomed, such as aerospace and aeronautical, biomedical, civil, chemical and materials science, electronic and telecommunications, energy and electrical, manufacturing, logistics and transportation, mechanical, naval architecture, reliability, robotics, structural, etc. Within the EA field, the integration of innovative and improvement aspects in the algorithms for solving real world engineering design problems, in the abovementioned application fields, are welcomed and encouraged, such as the following: parallel EAs, surrogate modelling, hybridization with other optimization techniques, multi-objective and many-objective optimization, etc.

Keywords

Technology: general issues --- History of engineering & technology --- Automatic Voltage Regulation system --- Chaotic optimization --- Fractional Order Proportional-Integral-Derivative controller --- Yellow Saddle Goatfish Algorithm --- two-stage method --- mono and multi-objective optimization --- multi-objective optimization --- optimal design --- Gough–Stewart --- parallel manipulator --- performance metrics --- diversity control --- genetic algorithm --- bankruptcy problem --- classification --- T-junctions --- neural networks --- finite elements analysis --- surrogate --- beam improvements --- beam T-junctions models --- artificial neural networks (ANN) limited training data --- multi-objective decision-making --- Pareto front --- preference in multi-objective optimization --- aeroacoustics --- trailing-edge noise --- global optimization --- evolutionary algorithms --- nearly optimal solutions --- archiving strategy --- evolutionary algorithm --- non-linear parametric identification --- multi-objective evolutionary algorithms --- availability --- design --- preventive maintenance scheduling --- encoding --- accuracy levels --- plastics thermoforming --- sheet thickness distribution --- evolutionary optimization --- genetic programming --- control --- differential evolution --- reusable launch vehicle --- quality control --- roughness measurement --- machine vision --- machine learning --- parameter optimization --- distance-based --- mutation-selection --- real application --- experimental study --- global optimisation --- worst-case scenario --- robust --- min-max optimization --- optimal control --- multi-objective optimisation --- robust design --- trajectory optimisation --- uncertainty quantification --- unscented transformation --- spaceplanes --- space systems --- launchers --- Automatic Voltage Regulation system --- Chaotic optimization --- Fractional Order Proportional-Integral-Derivative controller --- Yellow Saddle Goatfish Algorithm --- two-stage method --- mono and multi-objective optimization --- multi-objective optimization --- optimal design --- Gough–Stewart --- parallel manipulator --- performance metrics --- diversity control --- genetic algorithm --- bankruptcy problem --- classification --- T-junctions --- neural networks --- finite elements analysis --- surrogate --- beam improvements --- beam T-junctions models --- artificial neural networks (ANN) limited training data --- multi-objective decision-making --- Pareto front --- preference in multi-objective optimization --- aeroacoustics --- trailing-edge noise --- global optimization --- evolutionary algorithms --- nearly optimal solutions --- archiving strategy --- evolutionary algorithm --- non-linear parametric identification --- multi-objective evolutionary algorithms --- availability --- design --- preventive maintenance scheduling --- encoding --- accuracy levels --- plastics thermoforming --- sheet thickness distribution --- evolutionary optimization --- genetic programming --- control --- differential evolution --- reusable launch vehicle --- quality control --- roughness measurement --- machine vision --- machine learning --- parameter optimization --- distance-based --- mutation-selection --- real application --- experimental study --- global optimisation --- worst-case scenario --- robust --- min-max optimization --- optimal control --- multi-objective optimisation --- robust design --- trajectory optimisation --- uncertainty quantification --- unscented transformation --- spaceplanes --- space systems --- launchers


Book
Indoor Positioning and Navigation
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, rapid development in robotics, mobile, and communication technologies has encouraged many studies in the field of localization and navigation in indoor environments. An accurate localization system that can operate in an indoor environment has considerable practical value, because it can be built into autonomous mobile systems or a personal navigation system on a smartphone for guiding people through airports, shopping malls, museums and other public institutions, etc. Such a system would be particularly useful for blind people. Modern smartphones are equipped with numerous sensors (such as inertial sensors, cameras, and barometers) and communication modules (such as WiFi, Bluetooth, NFC, LTE/5G, and UWB capabilities), which enable the implementation of various localization algorithms, namely, visual localization, inertial navigation system, and radio localization. For the mapping of indoor environments and localization of autonomous mobile sysems, LIDAR sensors are also frequently used in addition to smartphone sensors. Visual localization and inertial navigation systems are sensitive to external disturbances; therefore, sensor fusion approaches can be used for the implementation of robust localization algorithms. These have to be optimized in order to be computationally efficient, which is essential for real-time processing and low energy consumption on a smartphone or robot.

Keywords

Technology: general issues --- Energy industries & utilities --- dynamic objects identification and localization --- laser cluster --- radial velocity similarity --- Pearson correlation coefficient --- particle filter --- trilateral indoor positioning --- RSSI filter --- RSSI classification --- stability --- accuracy --- inertial navigation system --- artificial neural network --- motion tracking --- sensor fusion --- indoor navigation system --- indoor positioning --- indoor navigation --- radiating cable --- leaky feeder --- augmented reality --- Bluetooth --- indoor positioning system --- smart hospital --- indoor --- positioning --- visually impaired --- deep learning --- multi-layered perceptron --- inertial sensor --- smartphone --- multi-variational message passing (M-VMP) --- factor graph (FG) --- second-order Taylor expansion --- cooperative localization --- joint estimation of position and clock --- RTLS --- indoor positioning system (IPS) --- position data --- industry 4.0 --- traceability --- product tracking --- fingerprinting localization --- Bluetooth low energy --- Wi-Fi --- performance metrics --- positioning algorithms --- location source optimization --- fuzzy comprehensive evaluation --- DCPCRLB --- UAV --- unmanned aerial vehicles --- NWPS --- indoor positioning systems --- GPS denied --- GNSS denied --- autonomous vehicles --- visible light positioning --- mobile robot --- calibration --- appearance-based localization --- computer vision --- Gaussian processes --- manifold learning --- robot vision systems --- image manifold --- descriptor manifold --- indoor fingerprinting localization --- Gaussian filter --- Kalman filter --- received signal strength indicator --- channel state information --- indoor localization --- visual-inertial SLAM --- constrained optimization --- path loss model --- particle swarm optimization --- beacon --- absolute position system --- cooperative algorithm --- intercepting vehicles --- robot framework --- UWB sensors --- Internet of Things (IoT) --- wireless sensor network (WSN) --- switched-beam antenna --- electronically steerable parasitic array radiator (ESPAR) antenna --- received signal strength (RSS) --- fingerprinting --- down-conversion --- GPS --- navigation --- RF repeaters --- up-conversion --- dynamic objects identification and localization --- laser cluster --- radial velocity similarity --- Pearson correlation coefficient --- particle filter --- trilateral indoor positioning --- RSSI filter --- RSSI classification --- stability --- accuracy --- inertial navigation system --- artificial neural network --- motion tracking --- sensor fusion --- indoor navigation system --- indoor positioning --- indoor navigation --- radiating cable --- leaky feeder --- augmented reality --- Bluetooth --- indoor positioning system --- smart hospital --- indoor --- positioning --- visually impaired --- deep learning --- multi-layered perceptron --- inertial sensor --- smartphone --- multi-variational message passing (M-VMP) --- factor graph (FG) --- second-order Taylor expansion --- cooperative localization --- joint estimation of position and clock --- RTLS --- indoor positioning system (IPS) --- position data --- industry 4.0 --- traceability --- product tracking --- fingerprinting localization --- Bluetooth low energy --- Wi-Fi --- performance metrics --- positioning algorithms --- location source optimization --- fuzzy comprehensive evaluation --- DCPCRLB --- UAV --- unmanned aerial vehicles --- NWPS --- indoor positioning systems --- GPS denied --- GNSS denied --- autonomous vehicles --- visible light positioning --- mobile robot --- calibration --- appearance-based localization --- computer vision --- Gaussian processes --- manifold learning --- robot vision systems --- image manifold --- descriptor manifold --- indoor fingerprinting localization --- Gaussian filter --- Kalman filter --- received signal strength indicator --- channel state information --- indoor localization --- visual-inertial SLAM --- constrained optimization --- path loss model --- particle swarm optimization --- beacon --- absolute position system --- cooperative algorithm --- intercepting vehicles --- robot framework --- UWB sensors --- Internet of Things (IoT) --- wireless sensor network (WSN) --- switched-beam antenna --- electronically steerable parasitic array radiator (ESPAR) antenna --- received signal strength (RSS) --- fingerprinting --- down-conversion --- GPS --- navigation --- RF repeaters --- up-conversion


Book
Evolutionary Algorithms in Engineering Design Optimization
Authors: --- --- --- ---
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Evolutionary algorithms (EAs) are population-based global optimizers, which, due to their characteristics, have allowed us to solve, in a straightforward way, many real world optimization problems in the last three decades, particularly in engineering fields. Their main advantages are the following: they do not require any requisite to the objective/fitness evaluation function (continuity, derivability, convexity, etc.); they are not limited by the appearance of discrete and/or mixed variables or by the requirement of uncertainty quantification in the search. Moreover, they can deal with more than one objective function simultaneously through the use of evolutionary multi-objective optimization algorithms. This set of advantages, and the continuously increased computing capability of modern computers, has enhanced their application in research and industry. From the application point of view, in this Special Issue, all engineering fields are welcomed, such as aerospace and aeronautical, biomedical, civil, chemical and materials science, electronic and telecommunications, energy and electrical, manufacturing, logistics and transportation, mechanical, naval architecture, reliability, robotics, structural, etc. Within the EA field, the integration of innovative and improvement aspects in the algorithms for solving real world engineering design problems, in the abovementioned application fields, are welcomed and encouraged, such as the following: parallel EAs, surrogate modelling, hybridization with other optimization techniques, multi-objective and many-objective optimization, etc.

Keywords

Technology: general issues --- History of engineering & technology --- Automatic Voltage Regulation system --- Chaotic optimization --- Fractional Order Proportional-Integral-Derivative controller --- Yellow Saddle Goatfish Algorithm --- two-stage method --- mono and multi-objective optimization --- multi-objective optimization --- optimal design --- Gough–Stewart --- parallel manipulator --- performance metrics --- diversity control --- genetic algorithm --- bankruptcy problem --- classification --- T-junctions --- neural networks --- finite elements analysis --- surrogate --- beam improvements --- beam T-junctions models --- artificial neural networks (ANN) limited training data --- multi-objective decision-making --- Pareto front --- preference in multi-objective optimization --- aeroacoustics --- trailing-edge noise --- global optimization --- evolutionary algorithms --- nearly optimal solutions --- archiving strategy --- evolutionary algorithm --- non-linear parametric identification --- multi-objective evolutionary algorithms --- availability --- design --- preventive maintenance scheduling --- encoding --- accuracy levels --- plastics thermoforming --- sheet thickness distribution --- evolutionary optimization --- genetic programming --- control --- differential evolution --- reusable launch vehicle --- quality control --- roughness measurement --- machine vision --- machine learning --- parameter optimization --- distance-based --- mutation-selection --- real application --- experimental study --- global optimisation --- worst-case scenario --- robust --- min-max optimization --- optimal control --- multi-objective optimisation --- robust design --- trajectory optimisation --- uncertainty quantification --- unscented transformation --- spaceplanes --- space systems --- launchers


Book
Indoor Positioning and Navigation
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

In recent years, rapid development in robotics, mobile, and communication technologies has encouraged many studies in the field of localization and navigation in indoor environments. An accurate localization system that can operate in an indoor environment has considerable practical value, because it can be built into autonomous mobile systems or a personal navigation system on a smartphone for guiding people through airports, shopping malls, museums and other public institutions, etc. Such a system would be particularly useful for blind people. Modern smartphones are equipped with numerous sensors (such as inertial sensors, cameras, and barometers) and communication modules (such as WiFi, Bluetooth, NFC, LTE/5G, and UWB capabilities), which enable the implementation of various localization algorithms, namely, visual localization, inertial navigation system, and radio localization. For the mapping of indoor environments and localization of autonomous mobile sysems, LIDAR sensors are also frequently used in addition to smartphone sensors. Visual localization and inertial navigation systems are sensitive to external disturbances; therefore, sensor fusion approaches can be used for the implementation of robust localization algorithms. These have to be optimized in order to be computationally efficient, which is essential for real-time processing and low energy consumption on a smartphone or robot.

Keywords

Technology: general issues --- Energy industries & utilities --- dynamic objects identification and localization --- laser cluster --- radial velocity similarity --- Pearson correlation coefficient --- particle filter --- trilateral indoor positioning --- RSSI filter --- RSSI classification --- stability --- accuracy --- inertial navigation system --- artificial neural network --- motion tracking --- sensor fusion --- indoor navigation system --- indoor positioning --- indoor navigation --- radiating cable --- leaky feeder --- augmented reality --- Bluetooth --- indoor positioning system --- smart hospital --- indoor --- positioning --- visually impaired --- deep learning --- multi-layered perceptron --- inertial sensor --- smartphone --- multi-variational message passing (M-VMP) --- factor graph (FG) --- second-order Taylor expansion --- cooperative localization --- joint estimation of position and clock --- RTLS --- indoor positioning system (IPS) --- position data --- industry 4.0 --- traceability --- product tracking --- fingerprinting localization --- Bluetooth low energy --- Wi-Fi --- performance metrics --- positioning algorithms --- location source optimization --- fuzzy comprehensive evaluation --- DCPCRLB --- UAV --- unmanned aerial vehicles --- NWPS --- indoor positioning systems --- GPS denied --- GNSS denied --- autonomous vehicles --- visible light positioning --- mobile robot --- calibration --- appearance-based localization --- computer vision --- Gaussian processes --- manifold learning --- robot vision systems --- image manifold --- descriptor manifold --- indoor fingerprinting localization --- Gaussian filter --- Kalman filter --- received signal strength indicator --- channel state information --- indoor localization --- visual-inertial SLAM --- constrained optimization --- path loss model --- particle swarm optimization --- beacon --- absolute position system --- cooperative algorithm --- intercepting vehicles --- robot framework --- UWB sensors --- Internet of Things (IoT) --- wireless sensor network (WSN) --- switched-beam antenna --- electronically steerable parasitic array radiator (ESPAR) antenna --- received signal strength (RSS) --- fingerprinting --- down-conversion --- GPS --- navigation --- RF repeaters --- up-conversion --- n/a

Listing 1 - 10 of 12 << page
of 2
>>
Sort by