Narrow your search
Listing 1 - 10 of 34 << page
of 4
>>
Sort by

Article
Fascinatie voor 19e eeuwse ondernemingszin
Year: 1997

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Peek, Ton


Book
Eline Peek : paintings.
Year: 2011

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Peek, Eline,

An index to the Griechische Vers-Inschriften (ed. W. Peek, Berlin 1955)
Authors: --- --- ---
ISBN: 9025610846 9025610854 9025611311 9025611591 Year: 1995 Publisher: Amsterdam : Adolf M. Hakkert--Publisher,


Book
Northern love : an exploration of Canadian masculinity
Author:
ISBN: 1282819577 9786612819575 1897425236 1897425228 9781897425237 9781282819573 9781897425220 661281957X Year: 2008 Publisher: Edmonton : AU Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In Northern Love, Paul Nonnekes pursues debates in psychoanalysis and cultural theory in pursuit of a distinctive conception of a Canadian masculinity. In close discussions of novels by Rudy Wiebe ( A Discovery of Strangers ) and Robert Kroetsch ( The Man from the Creeks ), Nonnekes ranges from Hegel to Lacan, and Butler and Kristeva to Žižek, eliciting an evolving conception of love characteristic of the Canadian cultural imaginary.


Book
Legendary Routes of the World
Authors: ---
ISBN: 9783899557596 389955759X Year: 2015 Publisher: Berlin Gestalten

Alice in Wonderland (pop-up)
Author:
ISBN: 043941184X Year: 2003 Publisher: New York Scholastic Inc.


Book
Novel Research about Biomechanics and Biomaterials Used in Hip, Knee and Related Joints
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Joint replacement is a very successful medical treatment. However, the survivorship of hip, knee, shoulder, and other implants is limited. The degradation of materials and the immune response against degradation products or an altered tissue loading condition as well as infections remain key factors of their failure. Current research in biomechanics and biomaterials is trying to overcome these existing limitations. This includes new implant designs and materials, bearings concepts and tribology, kinematical concepts, surgical techniques, and anti-inflammatory and infection prevention strategies. A careful evaluation of new materials and concepts is required in order to fully assess the strengths and weaknesses and to improve the quality and outcomes of joint replacements. Therefore, extensive research and clinical trials are essential. The main aspects that are addressed in this Special Issue are related to new material, design and manufacturing considerations of implants, implant wear and its potential clinical consequence, implant fixation, infection-related material aspects, and taper-related research topics. This Special Issue gives an overview of the ongoing research in those fields. The contributions were solicited from researchers working in the fields of biomechanics, biomaterials, and bio- and tissue-engineering.

Keywords

electrocautery --- titanium alloy --- cobalt-chrome alloy --- fatigue behavior --- biomechanical study --- Vertebral body replacement (VBR) --- non metallic --- radiolucent --- CF/PEEK --- biomechanics --- tumor --- vertebral fracture --- spine --- calcium phosphate --- granules --- bone graft substitutes --- total hip arthroplasty --- implant deformation --- acetabulum --- Metasul --- 28 mm small head --- metal-on-metal THA --- cobalt --- chromium --- titanium --- blood metal ions --- inflammation --- cytokines --- metal particles --- metal ions --- synovium --- dual taper modular hip stem --- acetabular revision --- asymptomatic stem modularity --- decision making model --- threshold --- biomaterials --- arthroplasty --- orthopaedic tribology --- experimental simulation --- total knee replacement --- PEEK-OPTIMA™ --- UHMWPE --- third body wear --- modular acetabular cup --- poly-ether-ether-ketone (PEEK) --- ceramics --- ultra-high-molecular-weight polyethylene (UHMW-PE) --- strain distribution --- bone stock --- cup-inlay stability --- disassembly forces --- relative motion --- periprosthetic joint infections --- infection prophylaxis --- Staphylococcus epidermidis --- in vivo osteomyelitis model --- metal wear --- retrieval study --- metal-on-metal articulation --- volumetric wear --- megaendoprosthesis --- total knee arthroplasty --- bone tumor --- Roentgen stereophotogrammetric analysis --- hip arthroplasty --- elementary geometrical shape model --- interchangeability --- head–taper junction --- migration --- ion implantation --- precision casting --- Ti6Al4V --- calcium --- phosphorus --- centrifugal casting --- porous implants --- tantalum --- hip replacement --- revision hip arthroplasty --- primary stability --- backside wear --- cross-linked --- total hip replacement --- hip cup system --- composite --- fibers --- polycarbonate-urethane --- meniscal replacement --- mechanical properties --- meniscus --- silicon nitride --- coating --- joint replacement --- wear --- adhesion --- trunnionosis --- trunnion failure --- fretting corrosion --- head–neck junction --- mechanically assisted crevice corrosion --- implant --- biomaterial --- corrosion --- residual stress --- taper connection --- anodic polarization --- surface treatment --- knee joint --- patellar component --- musculoskeletal multibody simulation --- patellofemoral joint --- polyetheretherketone --- fixation --- debonding --- implant–cement interface --- PMMA --- periprosthetic joint infection --- cement spacer --- articulating spacer --- hip spacer --- two-stage revision --- surface alteration --- surface roughness --- third-body wear --- zirconium oxide particles --- metal-on-cement articulation --- oxford unicompartmental knee arthroplasty --- bearing thickness --- retrieval analysis --- n/a --- biomedical rheology --- viscosity --- bovine calf serum --- shear thinning --- numerical simulation --- head-taper junction --- head-neck junction --- implant-cement interface


Book
Novel Research about Biomechanics and Biomaterials Used in Hip, Knee and Related Joints
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Joint replacement is a very successful medical treatment. However, the survivorship of hip, knee, shoulder, and other implants is limited. The degradation of materials and the immune response against degradation products or an altered tissue loading condition as well as infections remain key factors of their failure. Current research in biomechanics and biomaterials is trying to overcome these existing limitations. This includes new implant designs and materials, bearings concepts and tribology, kinematical concepts, surgical techniques, and anti-inflammatory and infection prevention strategies. A careful evaluation of new materials and concepts is required in order to fully assess the strengths and weaknesses and to improve the quality and outcomes of joint replacements. Therefore, extensive research and clinical trials are essential. The main aspects that are addressed in this Special Issue are related to new material, design and manufacturing considerations of implants, implant wear and its potential clinical consequence, implant fixation, infection-related material aspects, and taper-related research topics. This Special Issue gives an overview of the ongoing research in those fields. The contributions were solicited from researchers working in the fields of biomechanics, biomaterials, and bio- and tissue-engineering.

Keywords

Information technology industries --- electrocautery --- titanium alloy --- cobalt-chrome alloy --- fatigue behavior --- biomechanical study --- Vertebral body replacement (VBR) --- non metallic --- radiolucent --- CF/PEEK --- biomechanics --- tumor --- vertebral fracture --- spine --- calcium phosphate --- granules --- bone graft substitutes --- total hip arthroplasty --- implant deformation --- acetabulum --- Metasul --- 28 mm small head --- metal-on-metal THA --- cobalt --- chromium --- titanium --- blood metal ions --- inflammation --- cytokines --- metal particles --- metal ions --- synovium --- dual taper modular hip stem --- acetabular revision --- asymptomatic stem modularity --- decision making model --- threshold --- biomaterials --- arthroplasty --- orthopaedic tribology --- experimental simulation --- total knee replacement --- PEEK-OPTIMA™ --- UHMWPE --- third body wear --- modular acetabular cup --- poly-ether-ether-ketone (PEEK) --- ceramics --- ultra-high-molecular-weight polyethylene (UHMW-PE) --- strain distribution --- bone stock --- cup-inlay stability --- disassembly forces --- relative motion --- periprosthetic joint infections --- infection prophylaxis --- Staphylococcus epidermidis --- in vivo osteomyelitis model --- metal wear --- retrieval study --- metal-on-metal articulation --- volumetric wear --- megaendoprosthesis --- total knee arthroplasty --- bone tumor --- Roentgen stereophotogrammetric analysis --- hip arthroplasty --- elementary geometrical shape model --- interchangeability --- head-taper junction --- migration --- ion implantation --- precision casting --- Ti6Al4V --- calcium --- phosphorus --- centrifugal casting --- porous implants --- tantalum --- hip replacement --- revision hip arthroplasty --- primary stability --- backside wear --- cross-linked --- total hip replacement --- hip cup system --- composite --- fibers --- polycarbonate-urethane --- meniscal replacement --- mechanical properties --- meniscus --- silicon nitride --- coating --- joint replacement --- wear --- adhesion --- trunnionosis --- trunnion failure --- fretting corrosion --- head-neck junction --- mechanically assisted crevice corrosion --- implant --- biomaterial --- corrosion --- residual stress --- taper connection --- anodic polarization --- surface treatment --- knee joint --- patellar component --- musculoskeletal multibody simulation --- patellofemoral joint --- polyetheretherketone --- fixation --- debonding --- implant-cement interface --- PMMA --- periprosthetic joint infection --- cement spacer --- articulating spacer --- hip spacer --- two-stage revision --- surface alteration --- surface roughness --- third-body wear --- zirconium oxide particles --- metal-on-cement articulation --- oxford unicompartmental knee arthroplasty --- bearing thickness --- retrieval analysis --- biomedical rheology --- viscosity --- bovine calf serum --- shear thinning --- numerical simulation


Book
Physical Vapor Deposited Biomedical Coatings
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The book outlines a series of developments made in the manufacturing of bio-functional layers via Physical Vapour-Deposited (PVD) technologies for application in various areas of healthcare. The scrutinized PVD methods include Radio-Frequency Magnetron Sputtering (RF-MS), Cathodic Arc Evaporation, Pulsed Electron Deposition and its variants, Pulsed Laser Deposition, and Matrix-Assisted Pulsed Laser Evaporation (MAPLE) due to their great promise, especially in dentistry and orthopaedics. These methods have yet to gain traction for industrialization and large-scale application in biomedicine. A new generation of implant coatings can be made available by the (1) incorporation of organic moieties (e.g., proteins, peptides, enzymes) into thin films using innovative methods such as combinatorial MAPLE, (2) direct coupling of therapeutic agents with bioactive glasses or ceramics within substituted or composite layers via RF-MS, or (3) innovation in high-energy deposition methods, such as arc evaporation or pulsed electron beam methods.

Listing 1 - 10 of 34 << page
of 4
>>
Sort by