Listing 1 - 10 of 19 | << page >> |
Sort by
|
Choose an application
The basal ganglia has received much attention over the last two decades, as it has been implicated in many neurological and psychiatric disorders. Most of this research—in both animals and humans—attempt to understand the neural and biochemical substrates of basic motor and learning processes, and how these are affected in human patients as well as animal models of brain disorders. The current volume contains research articles and reviews describing basic, pre-clinical and clinical neuroscience research of the basal ganglia written by attendees of the 11th Triennial Meeting of the International Basal Ganglia Society (IBAGS) that was held March 3-7th, 2013 at the Princess Hotel, Eilat, Israel and by researchers of the basal ganglia. Specifically, articles in this volume include research reports on the biochemistry, computational theory, anatomy and physiology of single neurons and functional circuitry of the basal ganglia networks as well as the latest data on animal models of basal ganglia dysfunction and clinical studies in human patients.
Basal ganglia --- Computational neuroscience --- Neurobiology --- Basal Ganglia --- Physiology. --- Research. --- Mathematical models. --- physiopathology. --- Subthalamic Nucleus --- dopaime --- Parkinson's disease (PD) --- human imagine studies --- animal studies --- computational modeling
Choose an application
The basal ganglia has received much attention over the last two decades, as it has been implicated in many neurological and psychiatric disorders. Most of this research—in both animals and humans—attempt to understand the neural and biochemical substrates of basic motor and learning processes, and how these are affected in human patients as well as animal models of brain disorders. The current volume contains research articles and reviews describing basic, pre-clinical and clinical neuroscience research of the basal ganglia written by attendees of the 11th Triennial Meeting of the International Basal Ganglia Society (IBAGS) that was held March 3-7th, 2013 at the Princess Hotel, Eilat, Israel and by researchers of the basal ganglia. Specifically, articles in this volume include research reports on the biochemistry, computational theory, anatomy and physiology of single neurons and functional circuitry of the basal ganglia networks as well as the latest data on animal models of basal ganglia dysfunction and clinical studies in human patients.
Basal ganglia --- Computational neuroscience --- Neurobiology --- Basal Ganglia --- Physiology. --- Research. --- Mathematical models. --- physiopathology. --- Subthalamic Nucleus --- dopaime --- Parkinson's disease (PD) --- human imagine studies --- animal studies --- computational modeling
Choose an application
The basal ganglia has received much attention over the last two decades, as it has been implicated in many neurological and psychiatric disorders. Most of this research—in both animals and humans—attempt to understand the neural and biochemical substrates of basic motor and learning processes, and how these are affected in human patients as well as animal models of brain disorders. The current volume contains research articles and reviews describing basic, pre-clinical and clinical neuroscience research of the basal ganglia written by attendees of the 11th Triennial Meeting of the International Basal Ganglia Society (IBAGS) that was held March 3-7th, 2013 at the Princess Hotel, Eilat, Israel and by researchers of the basal ganglia. Specifically, articles in this volume include research reports on the biochemistry, computational theory, anatomy and physiology of single neurons and functional circuitry of the basal ganglia networks as well as the latest data on animal models of basal ganglia dysfunction and clinical studies in human patients.
Basal ganglia --- Computational neuroscience --- Neurobiology --- Basal Ganglia --- Subthalamic Nucleus --- dopaime --- Parkinson's disease (PD) --- human imagine studies --- animal studies --- computational modeling --- Physiology. --- Research. --- Mathematical models. --- physiopathology.
Choose an application
The contribution of genomic variants to the aetiopathogenesis of both paediatric and adult neurological disease is being increasingly recognized. The use of next-generation sequencing has led to the discovery of novel neurodevelopmental disorders, as exemplified by the deciphering developmental disorders (DDD) study, and provided insight into the aetiopathogenesis of common adult neurological diseases. Despite these advances, many challenges remain. Correctly classifying the pathogenicity of genomic variants from amongst the large number of variants identified by next-generation sequencing is recognized as perhaps the major challenge facing the field. Deep phenotyping (e.g., imaging, movement analysis) techniques can aid variant interpretation by correctly classifying individuals as affected or unaffected for segregation studies. The lack of information on the clinical phenotype of novel genetic subtypes of neurological disease creates limitations for genetic counselling. Both deep phenotyping and qualitative studies can capture the clinical and patient’s perspective on a disease and provide valuable information. This Special Issue aims to highlight how next-generation sequencing techniques have revolutionised our understanding of the aetiology of brain disease and describe the contribution of deep phenotyping studies to a variant interpretation and understanding of natural history.
polymicrogyria --- n/a --- neurodegenerative disease --- next generation sequencing (NGS) --- inborn error of metabolism --- genetic biomarker --- deep learning --- TUBA1A --- Alzheimer’s disease (AD) --- ataxia --- risk prediction --- p.(Arg2His) --- movement science --- tubulin --- R2H --- diagnosis --- machine learning --- metal storage disorders --- amyotrophic lateral sclerosis (ALS) --- glucocerebrosidase --- Parkinsonism --- cerebellar hypoplasia --- Gaucher disease --- disease phenotyping --- tubulinopathy --- Parkinson’s disease (PD) --- dementia --- Parkinson’s disease --- Neurogenetics. --- Nervous system --- Genetics --- Neurosciences --- Genetic aspects --- Alzheimer's disease (AD) --- Parkinson's disease (PD) --- Parkinson's disease
Choose an application
Neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis, are the most common pathologies of the central nervous system currently without a cure. They share common molecular and cellular characteristics, including protein misfolding, mitochondrial dysfunction, glutamate toxicity, dysregulation of calcium homeostasis, oxidative stress, inflammation, and ageing, which contribute to neuronal death. Efforts to treat these diseases are often limited by their multifactorial etiology. Natural products, thanks to their multitarget activities, are considered promising alternatives for the treatment of neurodegeneration. This book deals with two different forms of natural products: extracts and isolated compounds. The study of the bioactivity of the extracts is extremely important as many studies have demonstrated the synergistic effect of the combination of different natural products. On the other hand, the investigation of the activity of specifically isolated natural products can be also important to understand their cellular and molecular mechanisms and to define the specific bioactive components in extracts or foods. This book can be considered an important contribution to knowledge of the neuroprotective effect of natural products and presents a great deal of information, related to both the benefits but also the limitations of their use in counteracting neurodegeneration.
Research & information: general --- Biology, life sciences --- Vitamin D --- Multiple Sclerosis --- symptom --- neurodegeneration --- oxidative injury --- Parkinson’s disease --- terpenes, rotenone --- thymol --- Alzheimer’s disease --- Centella asiatica --- hippocampus --- protein poshophatase 2 --- glycogen synthase kinase 3 --- B-cell lymphoma 2 --- neuroprotection --- nutraceuticals --- bioavailability --- stress response --- neurodegenerative disease --- bioactive compound --- natural extract --- β-amyloid peptide --- tau protein --- clinical trial --- human studies --- animal studies --- in vitro studies --- curcumin --- free radicals --- heme oxygenase --- safety profile --- type 2 diabetes --- inflammation --- vascular damage --- learning --- memory --- natural compound --- oxidative stress --- cognitive dysfunction --- cell death --- synapse loss --- protein aggregation --- neuroinflammation --- algae --- seaweeds --- neurodegenerative diseases --- auraptene --- dopamine neuron --- antioxidant --- mitochondria --- Chionanthus retusus --- flavonoid --- flower --- HO-1 --- NO --- Lippia citriodora --- VEE --- Vs --- relaxation --- depression --- cyclic AMP --- calcium --- blood–brain barrier --- catechin --- cognition --- epigallocatechin gallate --- green tea --- microbiota --- 5-(3,5-dihydroxyphenyl)-γ-valerolactone --- ascaroside pheromone --- C. elegans --- dauer --- neuronal signaling --- sexual behavior --- survival signals --- proteostasis --- chaperones --- autophagy --- ubiquitin-proteasome --- unfolded protein response --- natural compounds --- natural products --- ethics --- patients’ autonomy --- beneficence --- nonmaleficence --- medical liability --- Parkinson’s disease (PD) --- mitochondrial dysfunction --- dynamics --- hormesis --- ubiquitin‒proteasome system (UPS) --- mitophagy --- n/a --- Parkinson's disease --- Alzheimer's disease --- blood-brain barrier --- patients' autonomy --- Parkinson's disease (PD)
Choose an application
Neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis, are the most common pathologies of the central nervous system currently without a cure. They share common molecular and cellular characteristics, including protein misfolding, mitochondrial dysfunction, glutamate toxicity, dysregulation of calcium homeostasis, oxidative stress, inflammation, and ageing, which contribute to neuronal death. Efforts to treat these diseases are often limited by their multifactorial etiology. Natural products, thanks to their multitarget activities, are considered promising alternatives for the treatment of neurodegeneration. This book deals with two different forms of natural products: extracts and isolated compounds. The study of the bioactivity of the extracts is extremely important as many studies have demonstrated the synergistic effect of the combination of different natural products. On the other hand, the investigation of the activity of specifically isolated natural products can be also important to understand their cellular and molecular mechanisms and to define the specific bioactive components in extracts or foods. This book can be considered an important contribution to knowledge of the neuroprotective effect of natural products and presents a great deal of information, related to both the benefits but also the limitations of their use in counteracting neurodegeneration.
Vitamin D --- Multiple Sclerosis --- symptom --- neurodegeneration --- oxidative injury --- Parkinson’s disease --- terpenes, rotenone --- thymol --- Alzheimer’s disease --- Centella asiatica --- hippocampus --- protein poshophatase 2 --- glycogen synthase kinase 3 --- B-cell lymphoma 2 --- neuroprotection --- nutraceuticals --- bioavailability --- stress response --- neurodegenerative disease --- bioactive compound --- natural extract --- β-amyloid peptide --- tau protein --- clinical trial --- human studies --- animal studies --- in vitro studies --- curcumin --- free radicals --- heme oxygenase --- safety profile --- type 2 diabetes --- inflammation --- vascular damage --- learning --- memory --- natural compound --- oxidative stress --- cognitive dysfunction --- cell death --- synapse loss --- protein aggregation --- neuroinflammation --- algae --- seaweeds --- neurodegenerative diseases --- auraptene --- dopamine neuron --- antioxidant --- mitochondria --- Chionanthus retusus --- flavonoid --- flower --- HO-1 --- NO --- Lippia citriodora --- VEE --- Vs --- relaxation --- depression --- cyclic AMP --- calcium --- blood–brain barrier --- catechin --- cognition --- epigallocatechin gallate --- green tea --- microbiota --- 5-(3,5-dihydroxyphenyl)-γ-valerolactone --- ascaroside pheromone --- C. elegans --- dauer --- neuronal signaling --- sexual behavior --- survival signals --- proteostasis --- chaperones --- autophagy --- ubiquitin-proteasome --- unfolded protein response --- natural compounds --- natural products --- ethics --- patients’ autonomy --- beneficence --- nonmaleficence --- medical liability --- Parkinson’s disease (PD) --- mitochondrial dysfunction --- dynamics --- hormesis --- ubiquitin‒proteasome system (UPS) --- mitophagy --- n/a --- Parkinson's disease --- Alzheimer's disease --- blood-brain barrier --- patients' autonomy --- Parkinson's disease (PD)
Choose an application
Continuous research advances have been observed in the field of environmentally-friendly polymers and polymer composites due to the dependence of polymers on fossil fuels and the sustainability issues related to plastic wastes. This book compiles the most recent research works in biopolymers, their blends and composites, and the use of natural additives, such as vegetable oils and other renewable and waste-derived liquids, with their marked environmental efficiency devoted to developing novel sustainable materials. Therefore, Environmentally Friendly Polymers and Polymer Composites provides an overview to scientists of the potential of these environmentally friendly materials and helps engineers to apply these new materials for industrial purposes.
Research & information: general --- PLA --- PCL --- TPS --- biopolymer blends --- mechanical properties --- compostable plastics --- green composites --- natural fillers --- poly(butylene succinate) (PBS) --- almond shell flour (ASF) --- poly (lactic acid) (PLA) --- poly(butylene succinate-co-adipate) (PBSA) --- binary blends --- shape memory behaviour --- polymer‒matrix composites (PMCs) --- thermomechanical --- electron microscopy --- compatibilizers --- poly(lactic acid) (PLA) --- natural fibre (NF) --- nano-hydroxyapatite (nHA) --- flammability --- crab shell --- chitin --- spherical microgels --- reverse micelle --- gelation --- chitosan (CS) --- anti-oxidant --- anti-apoptotic activity --- rotenone --- Parkinson’s disease (PD) --- composite materials --- hybrid resin --- natural reinforcement --- non-uniformities --- mechanical behavior --- antifungal activity --- dendrimer --- Origanum majorana L. essential oil --- Phytophthora infestans --- maleinized linseed oil MLO --- poly(lactic acid) --- diatomaceous earth --- biocomposites --- active containers --- polymer mixtures --- blends --- cashew nut shell liquid (CNSL) --- polypropylene --- high impact polystyrene --- compatibilization --- PHB --- PHBV --- rice husk --- biosustainability --- waste valorization --- bacterial cellulose --- natural rubber --- reinforcing --- biodegradable polymers --- Arboform --- epoxidized oil --- maleinized linseed oil --- toughness --- thermal stability --- pectin --- food packaging --- active compounds --- agro-waste residues --- circular economy --- graphene oxide --- size selection --- sodium alginate --- bio-based polymers --- biodegradable polyesters --- wood plastic composites --- natural additives and fillers --- composites characterization --- bioplastics manufacturing --- PLA --- PCL --- TPS --- biopolymer blends --- mechanical properties --- compostable plastics --- green composites --- natural fillers --- poly(butylene succinate) (PBS) --- almond shell flour (ASF) --- poly (lactic acid) (PLA) --- poly(butylene succinate-co-adipate) (PBSA) --- binary blends --- shape memory behaviour --- polymer‒matrix composites (PMCs) --- thermomechanical --- electron microscopy --- compatibilizers --- poly(lactic acid) (PLA) --- natural fibre (NF) --- nano-hydroxyapatite (nHA) --- flammability --- crab shell --- chitin --- spherical microgels --- reverse micelle --- gelation --- chitosan (CS) --- anti-oxidant --- anti-apoptotic activity --- rotenone --- Parkinson’s disease (PD) --- composite materials --- hybrid resin --- natural reinforcement --- non-uniformities --- mechanical behavior --- antifungal activity --- dendrimer --- Origanum majorana L. essential oil --- Phytophthora infestans --- maleinized linseed oil MLO --- poly(lactic acid) --- diatomaceous earth --- biocomposites --- active containers --- polymer mixtures --- blends --- cashew nut shell liquid (CNSL) --- polypropylene --- high impact polystyrene --- compatibilization --- PHB --- PHBV --- rice husk --- biosustainability --- waste valorization --- bacterial cellulose --- natural rubber --- reinforcing --- biodegradable polymers --- Arboform --- epoxidized oil --- maleinized linseed oil --- toughness --- thermal stability --- pectin --- food packaging --- active compounds --- agro-waste residues --- circular economy --- graphene oxide --- size selection --- sodium alginate --- bio-based polymers --- biodegradable polyesters --- wood plastic composites --- natural additives and fillers --- composites characterization --- bioplastics manufacturing
Choose an application
Neurodegenerative diseases, including Alzheimer’s, Parkinson’s, Huntington’s, and amyotrophic lateral sclerosis, are the most common pathologies of the central nervous system currently without a cure. They share common molecular and cellular characteristics, including protein misfolding, mitochondrial dysfunction, glutamate toxicity, dysregulation of calcium homeostasis, oxidative stress, inflammation, and ageing, which contribute to neuronal death. Efforts to treat these diseases are often limited by their multifactorial etiology. Natural products, thanks to their multitarget activities, are considered promising alternatives for the treatment of neurodegeneration. This book deals with two different forms of natural products: extracts and isolated compounds. The study of the bioactivity of the extracts is extremely important as many studies have demonstrated the synergistic effect of the combination of different natural products. On the other hand, the investigation of the activity of specifically isolated natural products can be also important to understand their cellular and molecular mechanisms and to define the specific bioactive components in extracts or foods. This book can be considered an important contribution to knowledge of the neuroprotective effect of natural products and presents a great deal of information, related to both the benefits but also the limitations of their use in counteracting neurodegeneration.
Research & information: general --- Biology, life sciences --- Vitamin D --- Multiple Sclerosis --- symptom --- neurodegeneration --- oxidative injury --- Parkinson's disease --- terpenes, rotenone --- thymol --- Alzheimer's disease --- Centella asiatica --- hippocampus --- protein poshophatase 2 --- glycogen synthase kinase 3 --- B-cell lymphoma 2 --- neuroprotection --- nutraceuticals --- bioavailability --- stress response --- neurodegenerative disease --- bioactive compound --- natural extract --- β-amyloid peptide --- tau protein --- clinical trial --- human studies --- animal studies --- in vitro studies --- curcumin --- free radicals --- heme oxygenase --- safety profile --- type 2 diabetes --- inflammation --- vascular damage --- learning --- memory --- natural compound --- oxidative stress --- cognitive dysfunction --- cell death --- synapse loss --- protein aggregation --- neuroinflammation --- algae --- seaweeds --- neurodegenerative diseases --- auraptene --- dopamine neuron --- antioxidant --- mitochondria --- Chionanthus retusus --- flavonoid --- flower --- HO-1 --- NO --- Lippia citriodora --- VEE --- Vs --- relaxation --- depression --- cyclic AMP --- calcium --- blood-brain barrier --- catechin --- cognition --- epigallocatechin gallate --- green tea --- microbiota --- 5-(3,5-dihydroxyphenyl)-γ-valerolactone --- ascaroside pheromone --- C. elegans --- dauer --- neuronal signaling --- sexual behavior --- survival signals --- proteostasis --- chaperones --- autophagy --- ubiquitin-proteasome --- unfolded protein response --- natural compounds --- natural products --- ethics --- patients' autonomy --- beneficence --- nonmaleficence --- medical liability --- Parkinson's disease (PD) --- mitochondrial dysfunction --- dynamics --- hormesis --- ubiquitin‒proteasome system (UPS) --- mitophagy --- Vitamin D --- Multiple Sclerosis --- symptom --- neurodegeneration --- oxidative injury --- Parkinson's disease --- terpenes, rotenone --- thymol --- Alzheimer's disease --- Centella asiatica --- hippocampus --- protein poshophatase 2 --- glycogen synthase kinase 3 --- B-cell lymphoma 2 --- neuroprotection --- nutraceuticals --- bioavailability --- stress response --- neurodegenerative disease --- bioactive compound --- natural extract --- β-amyloid peptide --- tau protein --- clinical trial --- human studies --- animal studies --- in vitro studies --- curcumin --- free radicals --- heme oxygenase --- safety profile --- type 2 diabetes --- inflammation --- vascular damage --- learning --- memory --- natural compound --- oxidative stress --- cognitive dysfunction --- cell death --- synapse loss --- protein aggregation --- neuroinflammation --- algae --- seaweeds --- neurodegenerative diseases --- auraptene --- dopamine neuron --- antioxidant --- mitochondria --- Chionanthus retusus --- flavonoid --- flower --- HO-1 --- NO --- Lippia citriodora --- VEE --- Vs --- relaxation --- depression --- cyclic AMP --- calcium --- blood-brain barrier --- catechin --- cognition --- epigallocatechin gallate --- green tea --- microbiota --- 5-(3,5-dihydroxyphenyl)-γ-valerolactone --- ascaroside pheromone --- C. elegans --- dauer --- neuronal signaling --- sexual behavior --- survival signals --- proteostasis --- chaperones --- autophagy --- ubiquitin-proteasome --- unfolded protein response --- natural compounds --- natural products --- ethics --- patients' autonomy --- beneficence --- nonmaleficence --- medical liability --- Parkinson's disease (PD) --- mitochondrial dysfunction --- dynamics --- hormesis --- ubiquitin‒proteasome system (UPS) --- mitophagy
Choose an application
Continuous research advances have been observed in the field of environmentally-friendly polymers and polymer composites due to the dependence of polymers on fossil fuels and the sustainability issues related to plastic wastes. This book compiles the most recent research works in biopolymers, their blends and composites, and the use of natural additives, such as vegetable oils and other renewable and waste-derived liquids, with their marked environmental efficiency devoted to developing novel sustainable materials. Therefore, Environmentally Friendly Polymers and Polymer Composites provides an overview to scientists of the potential of these environmentally friendly materials and helps engineers to apply these new materials for industrial purposes.
Research & information: general --- PLA --- PCL --- TPS --- biopolymer blends --- mechanical properties --- compostable plastics --- green composites --- natural fillers --- poly(butylene succinate) (PBS) --- almond shell flour (ASF) --- poly (lactic acid) (PLA) --- poly(butylene succinate-co-adipate) (PBSA) --- binary blends --- shape memory behaviour --- polymer‒matrix composites (PMCs) --- thermomechanical --- electron microscopy --- compatibilizers --- poly(lactic acid) (PLA) --- natural fibre (NF) --- nano-hydroxyapatite (nHA) --- flammability --- crab shell --- chitin --- spherical microgels --- reverse micelle --- gelation --- chitosan (CS) --- anti-oxidant --- anti-apoptotic activity --- rotenone --- Parkinson’s disease (PD) --- composite materials --- hybrid resin --- natural reinforcement --- non-uniformities --- mechanical behavior --- antifungal activity --- dendrimer --- Origanum majorana L. essential oil --- Phytophthora infestans --- maleinized linseed oil MLO --- poly(lactic acid) --- diatomaceous earth --- biocomposites --- active containers --- polymer mixtures --- blends --- cashew nut shell liquid (CNSL) --- polypropylene --- high impact polystyrene --- compatibilization --- PHB --- PHBV --- rice husk --- biosustainability --- waste valorization --- bacterial cellulose --- natural rubber --- reinforcing --- biodegradable polymers --- Arboform --- epoxidized oil --- maleinized linseed oil --- toughness --- thermal stability --- pectin --- food packaging --- active compounds --- agro-waste residues --- circular economy --- graphene oxide --- size selection --- sodium alginate --- bio-based polymers --- biodegradable polyesters --- wood plastic composites --- natural additives and fillers --- composites characterization --- bioplastics manufacturing
Choose an application
Continuous research advances have been observed in the field of environmentally-friendly polymers and polymer composites due to the dependence of polymers on fossil fuels and the sustainability issues related to plastic wastes. This book compiles the most recent research works in biopolymers, their blends and composites, and the use of natural additives, such as vegetable oils and other renewable and waste-derived liquids, with their marked environmental efficiency devoted to developing novel sustainable materials. Therefore, Environmentally Friendly Polymers and Polymer Composites provides an overview to scientists of the potential of these environmentally friendly materials and helps engineers to apply these new materials for industrial purposes.
PLA --- PCL --- TPS --- biopolymer blends --- mechanical properties --- compostable plastics --- green composites --- natural fillers --- poly(butylene succinate) (PBS) --- almond shell flour (ASF) --- poly (lactic acid) (PLA) --- poly(butylene succinate-co-adipate) (PBSA) --- binary blends --- shape memory behaviour --- polymer‒matrix composites (PMCs) --- thermomechanical --- electron microscopy --- compatibilizers --- poly(lactic acid) (PLA) --- natural fibre (NF) --- nano-hydroxyapatite (nHA) --- flammability --- crab shell --- chitin --- spherical microgels --- reverse micelle --- gelation --- chitosan (CS) --- anti-oxidant --- anti-apoptotic activity --- rotenone --- Parkinson’s disease (PD) --- composite materials --- hybrid resin --- natural reinforcement --- non-uniformities --- mechanical behavior --- antifungal activity --- dendrimer --- Origanum majorana L. essential oil --- Phytophthora infestans --- maleinized linseed oil MLO --- poly(lactic acid) --- diatomaceous earth --- biocomposites --- active containers --- polymer mixtures --- blends --- cashew nut shell liquid (CNSL) --- polypropylene --- high impact polystyrene --- compatibilization --- PHB --- PHBV --- rice husk --- biosustainability --- waste valorization --- bacterial cellulose --- natural rubber --- reinforcing --- biodegradable polymers --- Arboform --- epoxidized oil --- maleinized linseed oil --- toughness --- thermal stability --- pectin --- food packaging --- active compounds --- agro-waste residues --- circular economy --- graphene oxide --- size selection --- sodium alginate --- bio-based polymers --- biodegradable polyesters --- wood plastic composites --- natural additives and fillers --- composites characterization --- bioplastics manufacturing
Listing 1 - 10 of 19 | << page >> |
Sort by
|