Listing 1 - 10 of 16 | << page >> |
Sort by
|
Choose an application
Choose an application
Palygorskite-Sepiolite
Sédiment --- Sediment --- rock --- Milieu pélagique --- Pelagic environment --- Meerschaum --- Palygorskite --- Atapulgite --- Clay minerals --- Sepiolite --- Silicates --- Meerschaum. --- Palygorskite. --- Sediment.
Choose an application
The aim of this comprehenvise book is to present the most important results achieved in the research of the clay minerals palygorskite and sepiolite. Palygorskite and sepiolite have found to be useful in a huge variety of industrial and medical applications. As a result, research on these clays has been intensified during the last two decades, and important advances in their characterization have been made. The book contains contributions from distinguished scientists in the field. Comprehensive treatment of palygorskite and sepioliteCutting-edge de
Meerschaum. --- Nanostructured materials - Research. --- Palygorskite. --- Palygorskite -- Metallurgy. --- Nanostructured materials --- Palygorskite --- Meerschaum --- Chemical & Materials Engineering --- Engineering & Applied Sciences --- Materials Science --- Research --- Research. --- Sepiolite --- Silicates --- Atapulgite --- Clay minerals --- Nanomaterials --- Nanometer materials --- Nanophase materials --- Nanostructure controlled materials --- Nanostructure materials --- Ultra-fine microstructure materials --- Microstructure --- Nanotechnology
Choose an application
One of the great challenges of contemporary society is establishing a sustainable way of life in harmony with the environment without compromising economic growth and technological development. On the other hand, the increase in the world population has driven per capita consumption, and consequently, the generation of waste. Because of this, new materials are being developed from different types of waste. This Special Issue aims to highlight and share recent scientific findings in the area of “New Environmentally Friendly and Sustainable Materials” manufactured from different material types (polymers, ceramics, metallics, and composites) and urban, industrial, mining and agricultural wastes. Moreover, scientific topics such as improving performance and durability, materials characterization, hybrid materials, foams and porous materials, trends and advances, and mechanical, electrical, magnetic, optical, and thermal properties will also be accepted.
Technology: general issues --- History of engineering & technology --- palygorskite --- adsorption --- anionic dye --- cationic dye --- water treatment --- perlite tailings --- aggregate --- alkali–silicate reaction --- ceramic residue --- alkaline activation --- experimental design --- durability tests --- kaolin --- solid residues --- pozzolanic activity --- cement mortar --- carbonation --- poly (lactic acid) --- high-density biopolyethylene --- bioblends --- compatibilization --- scheelite tailings --- sustainable ceramic mass --- red ceramic --- firing parameters
Choose an application
One of the great challenges of contemporary society is establishing a sustainable way of life in harmony with the environment without compromising economic growth and technological development. On the other hand, the increase in the world population has driven per capita consumption, and consequently, the generation of waste. Because of this, new materials are being developed from different types of waste. This Special Issue aims to highlight and share recent scientific findings in the area of “New Environmentally Friendly and Sustainable Materials” manufactured from different material types (polymers, ceramics, metallics, and composites) and urban, industrial, mining and agricultural wastes. Moreover, scientific topics such as improving performance and durability, materials characterization, hybrid materials, foams and porous materials, trends and advances, and mechanical, electrical, magnetic, optical, and thermal properties will also be accepted.
palygorskite --- adsorption --- anionic dye --- cationic dye --- water treatment --- perlite tailings --- aggregate --- alkali–silicate reaction --- ceramic residue --- alkaline activation --- experimental design --- durability tests --- kaolin --- solid residues --- pozzolanic activity --- cement mortar --- carbonation --- poly (lactic acid) --- high-density biopolyethylene --- bioblends --- compatibilization --- scheelite tailings --- sustainable ceramic mass --- red ceramic --- firing parameters
Choose an application
One of the great challenges of contemporary society is establishing a sustainable way of life in harmony with the environment without compromising economic growth and technological development. On the other hand, the increase in the world population has driven per capita consumption, and consequently, the generation of waste. Because of this, new materials are being developed from different types of waste. This Special Issue aims to highlight and share recent scientific findings in the area of “New Environmentally Friendly and Sustainable Materials” manufactured from different material types (polymers, ceramics, metallics, and composites) and urban, industrial, mining and agricultural wastes. Moreover, scientific topics such as improving performance and durability, materials characterization, hybrid materials, foams and porous materials, trends and advances, and mechanical, electrical, magnetic, optical, and thermal properties will also be accepted.
Technology: general issues --- History of engineering & technology --- palygorskite --- adsorption --- anionic dye --- cationic dye --- water treatment --- perlite tailings --- aggregate --- alkali–silicate reaction --- ceramic residue --- alkaline activation --- experimental design --- durability tests --- kaolin --- solid residues --- pozzolanic activity --- cement mortar --- carbonation --- poly (lactic acid) --- high-density biopolyethylene --- bioblends --- compatibilization --- scheelite tailings --- sustainable ceramic mass --- red ceramic --- firing parameters
Choose an application
This book includes recent advances in the use of clays in the design of medicinal products and medicinal devices. The pharmaceutical applications of nanoclays are far ranging, because of their distinct advantages: they are versatile (possess a wide range of mechanical, chemical and physical properties) and available at reasonable costs. Some special clays (mainly kaolinite, halloysite, montmorillonite, saponite, hectorite, palygorskite and sepiolite), as well as semi-synthetic (organoclays) or synthetic (double layer hydroxides) derivatives, are very useful materials for modulating drug delivery. In the last decade, several actives have been loaded onto nanoclays and similar inorganic excipients to increase solubility, improve stability, reduce toxicity, and enhance bioavailability, with a consequent increase in therapeutic response. Polymer/clay nanocomposites with synergic properties have been developed, showing improved mechanical properties with respect to the pristine polymer matrices and allowing modified release of loaded actives. Moreover, nanoclays have very recently demonstrated positive effects on the proliferation and migration of fibroblasts. The development of clay-based medicinal products and medicinal devices requires experience in the fields of both clay structure and properties and pharmaceutical technology design.
Medicine --- hydrochlorothiazide --- cyclodextrins --- sepiolite --- nanoclay --- dissolution rate --- tablet --- electrospinning --- chitosan --- chondroitin sulfate --- scaffolds --- montmorillonite --- halloysite --- fibroblasts proliferation --- immune response --- glycosaminoglycans --- antimicrobial properties --- palygorskite --- spring water --- hydrogel --- fibroblast --- biocompatibility --- wound healing --- mesoporous clay --- Neusilin --- aeroperl --- liquisolid technique --- glyburide --- dissolution improvement --- hydrotalcite --- ketoprofen --- hybrid --- photostability --- hydrogel film --- bioadhesion --- heavy metal --- hazardous element --- element mobility --- clay minerals --- toxicity --- palygorksite --- proliferation --- Franz cell --- bioactive elements --- praziquantel --- drug --- organic solvents --- in vitro dissolution tests --- cytotoxicity --- targeted drug delivery --- halloysite nanotube --- osteosarcoma --- methotrexate --- surface modification --- n/a
Choose an application
This book includes recent advances in the use of clays in the design of medicinal products and medicinal devices. The pharmaceutical applications of nanoclays are far ranging, because of their distinct advantages: they are versatile (possess a wide range of mechanical, chemical and physical properties) and available at reasonable costs. Some special clays (mainly kaolinite, halloysite, montmorillonite, saponite, hectorite, palygorskite and sepiolite), as well as semi-synthetic (organoclays) or synthetic (double layer hydroxides) derivatives, are very useful materials for modulating drug delivery. In the last decade, several actives have been loaded onto nanoclays and similar inorganic excipients to increase solubility, improve stability, reduce toxicity, and enhance bioavailability, with a consequent increase in therapeutic response. Polymer/clay nanocomposites with synergic properties have been developed, showing improved mechanical properties with respect to the pristine polymer matrices and allowing modified release of loaded actives. Moreover, nanoclays have very recently demonstrated positive effects on the proliferation and migration of fibroblasts. The development of clay-based medicinal products and medicinal devices requires experience in the fields of both clay structure and properties and pharmaceutical technology design.
hydrochlorothiazide --- cyclodextrins --- sepiolite --- nanoclay --- dissolution rate --- tablet --- electrospinning --- chitosan --- chondroitin sulfate --- scaffolds --- montmorillonite --- halloysite --- fibroblasts proliferation --- immune response --- glycosaminoglycans --- antimicrobial properties --- palygorskite --- spring water --- hydrogel --- fibroblast --- biocompatibility --- wound healing --- mesoporous clay --- Neusilin --- aeroperl --- liquisolid technique --- glyburide --- dissolution improvement --- hydrotalcite --- ketoprofen --- hybrid --- photostability --- hydrogel film --- bioadhesion --- heavy metal --- hazardous element --- element mobility --- clay minerals --- toxicity --- palygorksite --- proliferation --- Franz cell --- bioactive elements --- praziquantel --- drug --- organic solvents --- in vitro dissolution tests --- cytotoxicity --- targeted drug delivery --- halloysite nanotube --- osteosarcoma --- methotrexate --- surface modification --- n/a
Choose an application
This book includes recent advances in the use of clays in the design of medicinal products and medicinal devices. The pharmaceutical applications of nanoclays are far ranging, because of their distinct advantages: they are versatile (possess a wide range of mechanical, chemical and physical properties) and available at reasonable costs. Some special clays (mainly kaolinite, halloysite, montmorillonite, saponite, hectorite, palygorskite and sepiolite), as well as semi-synthetic (organoclays) or synthetic (double layer hydroxides) derivatives, are very useful materials for modulating drug delivery. In the last decade, several actives have been loaded onto nanoclays and similar inorganic excipients to increase solubility, improve stability, reduce toxicity, and enhance bioavailability, with a consequent increase in therapeutic response. Polymer/clay nanocomposites with synergic properties have been developed, showing improved mechanical properties with respect to the pristine polymer matrices and allowing modified release of loaded actives. Moreover, nanoclays have very recently demonstrated positive effects on the proliferation and migration of fibroblasts. The development of clay-based medicinal products and medicinal devices requires experience in the fields of both clay structure and properties and pharmaceutical technology design.
Medicine --- hydrochlorothiazide --- cyclodextrins --- sepiolite --- nanoclay --- dissolution rate --- tablet --- electrospinning --- chitosan --- chondroitin sulfate --- scaffolds --- montmorillonite --- halloysite --- fibroblasts proliferation --- immune response --- glycosaminoglycans --- antimicrobial properties --- palygorskite --- spring water --- hydrogel --- fibroblast --- biocompatibility --- wound healing --- mesoporous clay --- Neusilin --- aeroperl --- liquisolid technique --- glyburide --- dissolution improvement --- hydrotalcite --- ketoprofen --- hybrid --- photostability --- hydrogel film --- bioadhesion --- heavy metal --- hazardous element --- element mobility --- clay minerals --- toxicity --- palygorksite --- proliferation --- Franz cell --- bioactive elements --- praziquantel --- drug --- organic solvents --- in vitro dissolution tests --- cytotoxicity --- targeted drug delivery --- halloysite nanotube --- osteosarcoma --- methotrexate --- surface modification
Choose an application
Since the first works introducing the aluminum intercalated clay family in the early 1970s, interest in the synthesis of Pillared InterLayered Clays (PILC) has increased tremendously, especially research into their properties and energetic and environmental applications. After our comprehensive reviews and book on the synthesis and catalytic applications of these materials, new references have appeared in the literature and the interest in this field is continuously increasing. The aim of this Special Issue is to collect the recent advances developed considering this family of solids.
Technology: general issues --- clays --- Al-PILC --- pillared clays --- scale up --- pillaring solution --- Keggin ion --- reutilization --- Keggin polycation --- concentrated media --- microwave radiation --- pillared montmorillonite --- AlNi-PILC --- Pd-Ce --- catalytic combustion --- benzene --- TPD/TPSR --- ZnO-TiO2/delaminated montmorillonite --- heterostructures --- Ag-coating --- solar photocatalytic activity --- water purification --- cadmium --- chitosan --- modification --- 13X molecular sieve --- removal --- dye remediation --- adsorption --- azo dye --- wastewater --- pillared porous phosphate heterostructures --- isotherm --- sericite --- thermal modification --- acid activation --- sodium modification --- montmorillonite/hydrotalcite composite --- montmorillonite/titania composite --- organoclay --- inverse micelle --- Mn-Al mixed oxide --- combustion catalysts --- ciprofloxacin --- smectite --- pillared clay --- keggin-like mixed Al/Fe polyoxocation --- mineralogical composition --- catalytic wet peroxide oxidation --- mesosilica --- methyl orange --- palygorskite
Listing 1 - 10 of 16 | << page >> |
Sort by
|