Listing 1 - 10 of 77 << page
of 8
>>
Sort by

Multi
Réassurance sociale : stabiliser les micro-assurances santé dans les pays pauvres
Authors: ---
ISBN: 2747205304 Year: 2003 Publisher: Genève : Bureau International du Travail [BIT],

Loading...
Export citation

Choose an application

Bookmark

Abstract


Digital
Handbook of physical vapor deposition (PVD) processing
Author:
ISBN: 9780815520375 9780815520382 0815520387 Year: 2010 Publisher: Amsterdam Elsevier

Loading...
Export citation

Choose an application

Bookmark

Abstract

This updated version of the popular handbook further explains all aspects of physical vapor deposition (PVD) process technology from the characterizing and preparing the substrate material, through deposition processing and film characterization, to post-deposition processing. The emphasis of the new edition remains on the aspects of the process flow that are critical to economical deposition of films that can meet the required performance specifications, with additional information to support the original material. &#13;&#13;The book covers subjects seldom treated in the literature: substrate characterization, adhesion, cleaning and the processing. The book also covers the widely discussed subjects of vacuum technology and the fundamentals of individual deposition processes. However, the author uniquely relates these topics to the practical issues that arise in PVD processing, such as contamination control and film growth effects, which are also rarely discussed in the literature. In bringing these subjects together in one book, the reader can understand the interrelationship between various aspects of the film deposition processing and the resulting film properties. The author draws upon his long experience with developing PVD processes and troubleshooting the processes in the manufacturing environment, to provide useful hints for not only avoiding problems, but also for solving problems when they arise. He uses actual experiences, called "war stories", to emphasize certain points. Special formatting of the text allows a reader who is already knowledgeable in the subject to scan through a section and find discussions that are of particular interest. The author has tried to make the subject index as useful as possible so that the reader can rapidly go to sections of particular interest. Extensive references allow the reader to pursue subjects in greater detail if desired. &#13;&#13;The book is intended to be both an introduction for those who are new to the field and a valuable resource to those already in the field. The discussion of transferring technology between R&D and manufacturing provided in Appendix 1, will be of special interest to the manager or engineer responsible for moving a PVD product and process from R&D into production. Appendix 2 has an extensive listing of periodical publications and professional societies that relate to PVD processing. The extensive Glossary of Terms and Acronyms provided in Appendix 3 will be of particular use to students and to those not fully conversant with the terminology of PVD processing or with the English language.&#13;&#13;Fully revised and updated to include the latest developments in PVD process technology&#13;&#13;War stories drawn from the authors extensive experience emphasize important points in development and manufacturing&#13;&#13;Appendices include listings of periodicals and professional societies, terms and acronyms, and material on transferring technology between R&D and manufacturing&#13;&#13; This updated version of the popular handbook further explains all aspects of physical vapor deposition (PVD) process technology from the characterizing and preparing the substrate material, through deposition processing and film characterization, to post-deposition processing. The emphasis of the new edition remains on the aspects of the process flow that are critical to economical deposition of films that can meet the required performance specifications, with additional information to support the original material. The book covers subjects seldom treated in the literature: substrate characterization, adhesion, cleaning and the processing. The book also covers the widely discussed subjects of vacuum technology and the fundamentals of individual deposition processes. However, the author uniquely relates these topics to the practical issues that arise in PVD processing, such as contamination control and film growth effects, which are also rarely discussed in the literature. In bringing these subjects together in one book, the reader can understand the interrelationship between various aspects of the film deposition processing and the resulting film properties. The author draws upon his long experience with developing PVD processes and troubleshooting the processes in the manufacturing environment, to provide useful hints for not only avoiding problems, but also for solving problems when they arise. He uses actual experiences, called "war stories", to emphasize certain points. Special formatting of the text allows a reader who is already knowledgeable in the subject to scan through a section and find discussions that are of particular interest. The author has tried to make the subject index as useful as possible so that the reader can rapidly go to sections of particular interest. Extensive references allow the reader to pursue subjects in greater detail if desired. The book is intended to be both an introduction for those who are new to the field and a valuable resource to those already in the field. The discussion of transferring technology between R & D and manufacturing provided in Appendix 1, will be of special interest to the manager or engineer responsible for moving a PVD product and process from R & D into production. Appendix 2 has an extensive listing of periodical publications and professional societies that relate to PVD processing. The extensive Glossary of Terms and Acronyms provided in Appendix 3 will be of particular use to students and to those not fully conversant with the terminology of PVD processing or with the English language. Fully revised and updated to include the latest developments in PVD process technology 'War stories' drawn from the author's extensive experience emphasize important points in development and manufacturing Appendices include listings of periodicals and professional societies, terms and acronyms, and material on transferring technology between R & D and manufacturing.


Book
Handbook of physical vapor deposition (PVD) processing
Author:
ISBN: 1282737694 9786612737695 0815520387 0080946585 0815520379 9780815520382 9780815520375 9780080946580 0080951953 Year: 2010 Publisher: Amsterdam : Elsevier,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This updated version of the popular handbook further explains all aspects of physical vapor deposition (PVD) process technology from the characterizing and preparing the substrate material, through deposition processing and film characterization, to post-deposition processing. The emphasis of the new edition remains on the aspects of the process flow that are critical to economical deposition of films that can meet the required performance specifications, with additional information to support the original material. The book covers subjects seldom treated in the literature: substrate


Book
Advanced Coatings for Corrosion Protection
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Corrosion is a significant issue in many industrial fields. Among other strategies, coatings are by far the most important technology for corrosion protection of metallic surfaces. The Special Issue “Advanced Coatings for Corrosion Protection” has been launched as a means to present recent developments in any type of advanced coating for corrosion protection. This book compiles 15 contributions on metallic, inorganic, polymeric and nanoparticle enhanced coatings that provide corrosion protection as well as other functionalities.

Keywords

fluorine free --- silanization --- superhydrophobic --- corrosion protection --- self-cleaning --- cathodic protection --- corrosion mitigation method --- potentiodynamic polarization test --- simulation --- pre-insulated pipeline --- zinc-rich coating --- cold galvanized coating --- durability --- magnesium --- microstructure --- coating --- corrosion --- polarization --- apatite --- scanning electrodeposition --- Ni-Fe-Co-P-CeO2 composite coating --- electrochemical corrosion behavior --- corrosion mechanism --- Zn-Al diffusion layer --- mechanical energy aided diffusion --- corrosion resistance --- electrochemistry --- aluminum foam --- electrodeposition --- compression test --- polyurea --- aging mechanism --- morphology --- chemical properties --- phase separation --- hydrogen bond --- magnesium alloy --- MAO coating --- corrosion behavior --- stratification phenomena --- marine environments --- aluminum alloy AlMg6 --- Al2O3 coating --- phase composition --- stress corrosion --- micro-arc oxidation --- polymer --- water hydraulic valve --- cavitation --- erosion --- coating selection --- molecular dynamics --- boride-based cermet --- laser cladding synthesis --- laser power --- hardness --- wear resistance --- MAX phase --- Ti2AlN --- PVD coating --- oxidation --- hydrogen permeation --- tungsten --- W–Cr–C coating --- carburization --- intergranular corrosion --- pitting corrosion --- stainless steel --- passivated --- electrochemical noise --- precipitation hardening --- metallic coatings --- anodizing layers --- passivation --- polymeric coatings --- laser cladding --- PVD --- superhydrophobic coatings --- composite coatings --- n/a --- W-Cr-C coating


Book
History, Developments and Trends in the Heat Treatment of Steel
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Steels and their heat treatment are still very important in modern industry because most industrial components are made from these materials. The proper choice of steel grades along with their suitable processing makes it possible to reduce the weight of the components, which is closely related to energy and fuel savings. This has decisive importance in branches such as the automotive, transport, consumer industries. A great number of novel heat- and surface-treatment techniques have been developed over the past three decades. These techniques involve, for example, vacuum treatment, sub-zero treatment, laser/electron beam surface hardening and alloying, low-pressure carburizing and nitriding, and physical vapour deposition. This Special Issue contains a collection of original research articles on not only advanced heat-treatment techniques—carburizing and sub-zero treatments—but also on the microstructure–property relationships in different ferrous alloys.

Ionized physical vapor deposition
Author:
ISBN: 0125330278 9786611054342 1281054348 008054293X 9780125330275 9780080542935 9781281054340 6611054340 Year: 2000 Publisher: San Diego Academic Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

This volume provides the first comprehensive look at a pivotal new technology in integrated circuit fabrication. For some time researchers have sought alternate processes for interconnecting the millions of transistors on each chip because conventional physical vapor deposition can no longer meet the specifications of today's complex integrated circuits. Out of this research, ionized physical vapor deposition has emerged as a premier technology for the deposition of thin metal films that form the dense interconnect wiring on state-of-the-art microprocessors and memory chips.For the fi


Book
History, Developments and Trends in the Heat Treatment of Steel
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Steels and their heat treatment are still very important in modern industry because most industrial components are made from these materials. The proper choice of steel grades along with their suitable processing makes it possible to reduce the weight of the components, which is closely related to energy and fuel savings. This has decisive importance in branches such as the automotive, transport, consumer industries. A great number of novel heat- and surface-treatment techniques have been developed over the past three decades. These techniques involve, for example, vacuum treatment, sub-zero treatment, laser/electron beam surface hardening and alloying, low-pressure carburizing and nitriding, and physical vapour deposition. This Special Issue contains a collection of original research articles on not only advanced heat-treatment techniques—carburizing and sub-zero treatments—but also on the microstructure–property relationships in different ferrous alloys.


Book
History, Developments and Trends in the Heat Treatment of Steel
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Steels and their heat treatment are still very important in modern industry because most industrial components are made from these materials. The proper choice of steel grades along with their suitable processing makes it possible to reduce the weight of the components, which is closely related to energy and fuel savings. This has decisive importance in branches such as the automotive, transport, consumer industries. A great number of novel heat- and surface-treatment techniques have been developed over the past three decades. These techniques involve, for example, vacuum treatment, sub-zero treatment, laser/electron beam surface hardening and alloying, low-pressure carburizing and nitriding, and physical vapour deposition. This Special Issue contains a collection of original research articles on not only advanced heat-treatment techniques—carburizing and sub-zero treatments—but also on the microstructure–property relationships in different ferrous alloys.


Book
Advanced Coatings for Corrosion Protection
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Corrosion is a significant issue in many industrial fields. Among other strategies, coatings are by far the most important technology for corrosion protection of metallic surfaces. The Special Issue “Advanced Coatings for Corrosion Protection” has been launched as a means to present recent developments in any type of advanced coating for corrosion protection. This book compiles 15 contributions on metallic, inorganic, polymeric and nanoparticle enhanced coatings that provide corrosion protection as well as other functionalities.

Keywords

Research & information: general --- fluorine free --- silanization --- superhydrophobic --- corrosion protection --- self-cleaning --- cathodic protection --- corrosion mitigation method --- potentiodynamic polarization test --- simulation --- pre-insulated pipeline --- zinc-rich coating --- cold galvanized coating --- durability --- magnesium --- microstructure --- coating --- corrosion --- polarization --- apatite --- scanning electrodeposition --- Ni-Fe-Co-P-CeO2 composite coating --- electrochemical corrosion behavior --- corrosion mechanism --- Zn-Al diffusion layer --- mechanical energy aided diffusion --- corrosion resistance --- electrochemistry --- aluminum foam --- electrodeposition --- compression test --- polyurea --- aging mechanism --- morphology --- chemical properties --- phase separation --- hydrogen bond --- magnesium alloy --- MAO coating --- corrosion behavior --- stratification phenomena --- marine environments --- aluminum alloy AlMg6 --- Al2O3 coating --- phase composition --- stress corrosion --- micro-arc oxidation --- polymer --- water hydraulic valve --- cavitation --- erosion --- coating selection --- molecular dynamics --- boride-based cermet --- laser cladding synthesis --- laser power --- hardness --- wear resistance --- MAX phase --- Ti2AlN --- PVD coating --- oxidation --- hydrogen permeation --- tungsten --- W-Cr-C coating --- carburization --- intergranular corrosion --- pitting corrosion --- stainless steel --- passivated --- electrochemical noise --- precipitation hardening --- metallic coatings --- anodizing layers --- passivation --- polymeric coatings --- laser cladding --- PVD --- superhydrophobic coatings --- composite coatings --- fluorine free --- silanization --- superhydrophobic --- corrosion protection --- self-cleaning --- cathodic protection --- corrosion mitigation method --- potentiodynamic polarization test --- simulation --- pre-insulated pipeline --- zinc-rich coating --- cold galvanized coating --- durability --- magnesium --- microstructure --- coating --- corrosion --- polarization --- apatite --- scanning electrodeposition --- Ni-Fe-Co-P-CeO2 composite coating --- electrochemical corrosion behavior --- corrosion mechanism --- Zn-Al diffusion layer --- mechanical energy aided diffusion --- corrosion resistance --- electrochemistry --- aluminum foam --- electrodeposition --- compression test --- polyurea --- aging mechanism --- morphology --- chemical properties --- phase separation --- hydrogen bond --- magnesium alloy --- MAO coating --- corrosion behavior --- stratification phenomena --- marine environments --- aluminum alloy AlMg6 --- Al2O3 coating --- phase composition --- stress corrosion --- micro-arc oxidation --- polymer --- water hydraulic valve --- cavitation --- erosion --- coating selection --- molecular dynamics --- boride-based cermet --- laser cladding synthesis --- laser power --- hardness --- wear resistance --- MAX phase --- Ti2AlN --- PVD coating --- oxidation --- hydrogen permeation --- tungsten --- W-Cr-C coating --- carburization --- intergranular corrosion --- pitting corrosion --- stainless steel --- passivated --- electrochemical noise --- precipitation hardening --- metallic coatings --- anodizing layers --- passivation --- polymeric coatings --- laser cladding --- PVD --- superhydrophobic coatings --- composite coatings


Book
Technologies of Coatings and Surface Hardening for Tool Industry
Author:
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The innovative coating and surface hardening technologies developed in recent years allow us to obtain practically any physical–mechanical or crystal–chemical complex properties of the metalworking tool surface layer. Today, the scientific approach to improving the operational characteristics of the tool surface layers produced from traditional tools industrial materials is a highly costly and long-lasting process. Different technological techniques, such as coatings (physical and chemical methods), surface hardening and alloying (chemical-thermal treatment, implantation), a combination of the listed methods, and other solutions are used for this. This edition aims to provide a review of the current state of the research and developments in the field of coatings and surface hardening technologies for cutting and die tools that can ensure a substantial increase of the work resource and reliability of the tool, an increase in productivity of machining, accuracy, and quality of the machined products, reduction in the material capacity of the production, and other important manufacturing factors. In doing so, the main emphasis should be on the results of the engineering works that have had a prosperous approbation in a laboratory or real manufacturing conditions.

Keywords

Technology: general issues --- hierarchical structure --- multilayer PVD coating --- stochastic process --- convection and diffusion --- reactive magnetron sputtering --- argon --- nitrogen and ethylene --- TaSi2 --- Ta3B4 and ZrB2 --- SHS and hot pressing --- composition and structure --- hardness and elastic modulus --- friction coefficient and wear resistance --- oxidation resistance --- diamond-like coatings --- nitride sublayer --- index of plasticity --- adhesive bond strength --- end mills --- hard alloy --- wear resistance --- milling of aluminum alloys --- milling of structural steels --- surface quality --- modeling --- carbon flux --- low-pressure vacuum carburizing --- medium-high alloy steel --- nanolayered PVD coating --- microdroplets --- crack formation --- tool wear --- nanolayered coating --- microparticles --- monocrystalline --- high-pressure, high-temperature (HPHT) diamond --- chemical vapor deposition (CVD) diamond --- high-fluence ion irradiation --- Ar+ --- C+ --- SEM --- AFM --- Raman spectra --- electrical conductivity --- AlCr-based --- CrAl-based --- (AlCrX)N --- (Al1−xCrx)2O3 --- arc --- HiPIMS --- nanolayers --- nanocomposite --- structure --- properties --- roughness --- coatings --- finish turning --- PCBN --- tempered steel --- micro cutters --- cutting edges --- wear-resistance --- coating deposition --- adhesion --- plasma --- ions --- charge exchange collisions --- fast gas atoms --- etching --- sharpening --- diamond-like carbon coating --- high-speed milling --- nickel alloy --- SiAlON --- spark plasma sintering --- adaptive coating --- adaptive material --- composite powder HSS --- cutting tool --- secondary structures --- surface layer --- thermal-force loads --- hierarchical structure --- multilayer PVD coating --- stochastic process --- convection and diffusion --- reactive magnetron sputtering --- argon --- nitrogen and ethylene --- TaSi2 --- Ta3B4 and ZrB2 --- SHS and hot pressing --- composition and structure --- hardness and elastic modulus --- friction coefficient and wear resistance --- oxidation resistance --- diamond-like coatings --- nitride sublayer --- index of plasticity --- adhesive bond strength --- end mills --- hard alloy --- wear resistance --- milling of aluminum alloys --- milling of structural steels --- surface quality --- modeling --- carbon flux --- low-pressure vacuum carburizing --- medium-high alloy steel --- nanolayered PVD coating --- microdroplets --- crack formation --- tool wear --- nanolayered coating --- microparticles --- monocrystalline --- high-pressure, high-temperature (HPHT) diamond --- chemical vapor deposition (CVD) diamond --- high-fluence ion irradiation --- Ar+ --- C+ --- SEM --- AFM --- Raman spectra --- electrical conductivity --- AlCr-based --- CrAl-based --- (AlCrX)N --- (Al1−xCrx)2O3 --- arc --- HiPIMS --- nanolayers --- nanocomposite --- structure --- properties --- roughness --- coatings --- finish turning --- PCBN --- tempered steel --- micro cutters --- cutting edges --- wear-resistance --- coating deposition --- adhesion --- plasma --- ions --- charge exchange collisions --- fast gas atoms --- etching --- sharpening --- diamond-like carbon coating --- high-speed milling --- nickel alloy --- SiAlON --- spark plasma sintering --- adaptive coating --- adaptive material --- composite powder HSS --- cutting tool --- secondary structures --- surface layer --- thermal-force loads

Listing 1 - 10 of 77 << page
of 8
>>
Sort by