Narrow your search

Library

KU Leuven (118)

ULiège (80)

ULB (73)

UGent (72)

Odisee (66)

Thomas More Kempen (65)

Thomas More Mechelen (65)

UCLL (65)

VIVES (65)

LUCA School of Arts (42)

More...

Resource type

book (164)

dissertation (5)

periodical (4)


Language

English (169)

Undetermined (2)

French (1)


Year
From To Submit

2023 (1)

2022 (3)

2021 (7)

2019 (4)

2018 (6)

More...
Listing 1 - 10 of 172 << page
of 18
>>
Sort by

Book
The Neuronal Functions of EF-hand Ca(2+)-binding Proteins 2nd Edition
Authors: --- --- ---
Year: 2016 Publisher: Frontiers Media SA,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ca2+ signaling in neurons is characterized by highly restricted and dynamic gradients called Ca2+ waves, spikes, transients and puffs depending upon their corresponding spatial and temporal features. Based on this strict segmentation the Ca2+ ion provides a versatile basis for complex signaling in neuronal subcompartments with a spatial resolution of micro- and nanodomains. The multitude of Ca2+-regulated processes requires specialized downstream processing machinery, translating the Ca2+ signal into alterations of cellular processes. The broad range of different Ca2+-triggered phenomena in neurons, ranging from neurotransmission to gene expression, is reflected by the existence of a multitude of different Ca2+-binding proteins (CaBPs) from which numerous belong to the EF-hand super-family. EF-hand proteins can be subdivided into Ca2+ buffer and Ca2+ sensor proteins. Whereas the first group has a very high affinity for Ca2+, exhibits little conformational change in the Ca2+-bound state and is thought to mainly chelate Ca2+, the second group has a lower affinity for Ca2+ and shows considerable conformational changes upon Ca2+-binding, which usually triggers a target interaction. Neuronal calcium sensor (NCS) proteins and the related Caldendrin/CaBP/Calneuron (nCaBPs) proteins are members of this latter group. They resemble the structure of their common ancestor Calmodulin (CaM) with four EF-hand Ca2+-binding motifs, of which not all are functional. However, despite their structural homology with CaM, NCS as well as nCaBPs are quite diverse in amino acid sequence. It is therefore surprising that relatively few binding partners have been identified that are not CaM targets and this raises the question of the specificity and function of these interactions. In terms of function, binding of NCS and nCaBP has frequently different consequences than binding of CaM, which substantially increases the versatility of the Ca2+ tool kit. The general idea of this special issue is to provide an overview on the function of neuronal EF-hand calcium-binding proteins in health and disease. But we will not just provide a mere collection of articles to stress the function of each protein. The issue will mainly deal with emerging concepts on Ca2+-signaling/buffering mediated by EF-hand Ca2+-binding proteins. This includes questions like features that define the functional role of a EF-hand calcium sensor in neurons, the conditions that make physiological relevance of a given interaction of a CaBP with its target plausible, the emerging synaptic role of these proteins, and mounting evidence for their role in the regulation of protein trafficking. Structural aspects and biophysical studies will be covered. Another aspect will be the role of CaBPs in brain disease states. This aspect includes studies showing that CaBPs are targets of drugs in clinical use, studies showing that expression levels of calcium-binding proteins are frequently altered in brain disease states as well as reports on mutations in EF-hand calcium sensors linked to human disease.

Keywords

Protein binding.


Book
The Neuronal Functions of EF-hand Ca(2+)-binding Proteins 2nd Edition
Authors: --- --- ---
Year: 2016 Publisher: Frontiers Media SA,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ca2+ signaling in neurons is characterized by highly restricted and dynamic gradients called Ca2+ waves, spikes, transients and puffs depending upon their corresponding spatial and temporal features. Based on this strict segmentation the Ca2+ ion provides a versatile basis for complex signaling in neuronal subcompartments with a spatial resolution of micro- and nanodomains. The multitude of Ca2+-regulated processes requires specialized downstream processing machinery, translating the Ca2+ signal into alterations of cellular processes. The broad range of different Ca2+-triggered phenomena in neurons, ranging from neurotransmission to gene expression, is reflected by the existence of a multitude of different Ca2+-binding proteins (CaBPs) from which numerous belong to the EF-hand super-family. EF-hand proteins can be subdivided into Ca2+ buffer and Ca2+ sensor proteins. Whereas the first group has a very high affinity for Ca2+, exhibits little conformational change in the Ca2+-bound state and is thought to mainly chelate Ca2+, the second group has a lower affinity for Ca2+ and shows considerable conformational changes upon Ca2+-binding, which usually triggers a target interaction. Neuronal calcium sensor (NCS) proteins and the related Caldendrin/CaBP/Calneuron (nCaBPs) proteins are members of this latter group. They resemble the structure of their common ancestor Calmodulin (CaM) with four EF-hand Ca2+-binding motifs, of which not all are functional. However, despite their structural homology with CaM, NCS as well as nCaBPs are quite diverse in amino acid sequence. It is therefore surprising that relatively few binding partners have been identified that are not CaM targets and this raises the question of the specificity and function of these interactions. In terms of function, binding of NCS and nCaBP has frequently different consequences than binding of CaM, which substantially increases the versatility of the Ca2+ tool kit. The general idea of this special issue is to provide an overview on the function of neuronal EF-hand calcium-binding proteins in health and disease. But we will not just provide a mere collection of articles to stress the function of each protein. The issue will mainly deal with emerging concepts on Ca2+-signaling/buffering mediated by EF-hand Ca2+-binding proteins. This includes questions like features that define the functional role of a EF-hand calcium sensor in neurons, the conditions that make physiological relevance of a given interaction of a CaBP with its target plausible, the emerging synaptic role of these proteins, and mounting evidence for their role in the regulation of protein trafficking. Structural aspects and biophysical studies will be covered. Another aspect will be the role of CaBPs in brain disease states. This aspect includes studies showing that CaBPs are targets of drugs in clinical use, studies showing that expression levels of calcium-binding proteins are frequently altered in brain disease states as well as reports on mutations in EF-hand calcium sensors linked to human disease.

Keywords

Protein binding.


Book
The Neuronal Functions of EF-hand Ca(2+)-binding Proteins 2nd Edition
Authors: --- --- ---
Year: 2016 Publisher: Frontiers Media SA,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Ca2+ signaling in neurons is characterized by highly restricted and dynamic gradients called Ca2+ waves, spikes, transients and puffs depending upon their corresponding spatial and temporal features. Based on this strict segmentation the Ca2+ ion provides a versatile basis for complex signaling in neuronal subcompartments with a spatial resolution of micro- and nanodomains. The multitude of Ca2+-regulated processes requires specialized downstream processing machinery, translating the Ca2+ signal into alterations of cellular processes. The broad range of different Ca2+-triggered phenomena in neurons, ranging from neurotransmission to gene expression, is reflected by the existence of a multitude of different Ca2+-binding proteins (CaBPs) from which numerous belong to the EF-hand super-family. EF-hand proteins can be subdivided into Ca2+ buffer and Ca2+ sensor proteins. Whereas the first group has a very high affinity for Ca2+, exhibits little conformational change in the Ca2+-bound state and is thought to mainly chelate Ca2+, the second group has a lower affinity for Ca2+ and shows considerable conformational changes upon Ca2+-binding, which usually triggers a target interaction. Neuronal calcium sensor (NCS) proteins and the related Caldendrin/CaBP/Calneuron (nCaBPs) proteins are members of this latter group. They resemble the structure of their common ancestor Calmodulin (CaM) with four EF-hand Ca2+-binding motifs, of which not all are functional. However, despite their structural homology with CaM, NCS as well as nCaBPs are quite diverse in amino acid sequence. It is therefore surprising that relatively few binding partners have been identified that are not CaM targets and this raises the question of the specificity and function of these interactions. In terms of function, binding of NCS and nCaBP has frequently different consequences than binding of CaM, which substantially increases the versatility of the Ca2+ tool kit. The general idea of this special issue is to provide an overview on the function of neuronal EF-hand calcium-binding proteins in health and disease. But we will not just provide a mere collection of articles to stress the function of each protein. The issue will mainly deal with emerging concepts on Ca2+-signaling/buffering mediated by EF-hand Ca2+-binding proteins. This includes questions like features that define the functional role of a EF-hand calcium sensor in neurons, the conditions that make physiological relevance of a given interaction of a CaBP with its target plausible, the emerging synaptic role of these proteins, and mounting evidence for their role in the regulation of protein trafficking. Structural aspects and biophysical studies will be covered. Another aspect will be the role of CaBPs in brain disease states. This aspect includes studies showing that CaBPs are targets of drugs in clinical use, studies showing that expression levels of calcium-binding proteins are frequently altered in brain disease states as well as reports on mutations in EF-hand calcium sensors linked to human disease.

Keywords

Protein binding.


Book
Galectins in Cancer and Translational Medicine
Author:
Year: 2018 Publisher: Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the post-genomic era, many efforts have been devoted to better understanding the biological information encoded by the cell "glycome" in normal and pathologic conditions. The glycan signature of human cells plays a pivotal role in regulating fundamental biological processes, which are critical for cell physiology and for cancer as well. Galectins (also worded S-type lectins) are an evolutionarily conserved family of endogenous lectins, which bind carbohydrates with high specificity. These molecules, which can be found both intracellularly and in the extracellular milieu, are functionally active in converting glycan-containing information into cell biological programs. This fashionable mechanism of signal transduction plays a relevant role in regulating several biological functions, including RNA splicing, gene transcription, cell migration and differentiation, apoptosis, immune response, and tumor growth and progression. It is not surprising, indeed, that a large number of studies on galectin-glycan interactions and galectins expression and function in human diseases have been published in the recent literature, spanning from immunology to cardiovascular medicine, from diagnostic Pathology to nuclear medicine. The aim of this Special Issue of IJMS is to collect selected contributions in the field reporting data, concepts, and new ideas, which have the potential to be translated in a clinical setting in the near future, in order to improve the diagnosis and treatment of cancer and other relevant human diseases.

Keywords

Protein binding. --- Cancer.


Book
Galectins in Cancer and Translational Medicine
Author:
Year: 2018 Publisher: Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the post-genomic era, many efforts have been devoted to better understanding the biological information encoded by the cell "glycome" in normal and pathologic conditions. The glycan signature of human cells plays a pivotal role in regulating fundamental biological processes, which are critical for cell physiology and for cancer as well. Galectins (also worded S-type lectins) are an evolutionarily conserved family of endogenous lectins, which bind carbohydrates with high specificity. These molecules, which can be found both intracellularly and in the extracellular milieu, are functionally active in converting glycan-containing information into cell biological programs. This fashionable mechanism of signal transduction plays a relevant role in regulating several biological functions, including RNA splicing, gene transcription, cell migration and differentiation, apoptosis, immune response, and tumor growth and progression. It is not surprising, indeed, that a large number of studies on galectin-glycan interactions and galectins expression and function in human diseases have been published in the recent literature, spanning from immunology to cardiovascular medicine, from diagnostic Pathology to nuclear medicine. The aim of this Special Issue of IJMS is to collect selected contributions in the field reporting data, concepts, and new ideas, which have the potential to be translated in a clinical setting in the near future, in order to improve the diagnosis and treatment of cancer and other relevant human diseases.

Keywords

Protein binding. --- Cancer.


Book
Galectins in Cancer and Translational Medicine
Author:
Year: 2018 Publisher: Basel, Switzerland : MDPI - Multidisciplinary Digital Publishing Institute,

Loading...
Export citation

Choose an application

Bookmark

Abstract

In the post-genomic era, many efforts have been devoted to better understanding the biological information encoded by the cell "glycome" in normal and pathologic conditions. The glycan signature of human cells plays a pivotal role in regulating fundamental biological processes, which are critical for cell physiology and for cancer as well. Galectins (also worded S-type lectins) are an evolutionarily conserved family of endogenous lectins, which bind carbohydrates with high specificity. These molecules, which can be found both intracellularly and in the extracellular milieu, are functionally active in converting glycan-containing information into cell biological programs. This fashionable mechanism of signal transduction plays a relevant role in regulating several biological functions, including RNA splicing, gene transcription, cell migration and differentiation, apoptosis, immune response, and tumor growth and progression. It is not surprising, indeed, that a large number of studies on galectin-glycan interactions and galectins expression and function in human diseases have been published in the recent literature, spanning from immunology to cardiovascular medicine, from diagnostic Pathology to nuclear medicine. The aim of this Special Issue of IJMS is to collect selected contributions in the field reporting data, concepts, and new ideas, which have the potential to be translated in a clinical setting in the near future, in order to improve the diagnosis and treatment of cancer and other relevant human diseases.

Keywords

Protein binding. --- Cancer.


Book
Calcium-binding proteins and calcium function : proceedings of the International symposium on calcium-binding proteins and calcium function in health and disease, June 5-9, 1977
Author:
Year: 1977 Publisher: New York (N.Y.): North-Holland

Loading...
Export citation

Choose an application

Bookmark

Abstract

Keywords

Calcium --- Protein Binding


Book
Carbohydrate-protein interaction
Authors: ---
ISBN: 3540193782 0387193782 3642466435 3642466419 9780387193786 9783540193784 Year: 1988 Volume: 139 Publisher: Berlin : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Steroid assay by protein binding.
Author:
Year: 1970 Publisher: Stockholm : Karolinska institutet,

Loading...
Export citation

Choose an application

Bookmark

Abstract


Book
Steroid assay by protein binding
Author:
Year: 1970 Publisher: Stockholm Karolinska institutet

Loading...
Export citation

Choose an application

Bookmark

Abstract

Listing 1 - 10 of 172 << page
of 18
>>
Sort by