Listing 1 - 5 of 5 |
Sort by
|
Choose an application
Here, Elliot West combines military, political, and social history to show how the battles of 1876 and 1877 were a major transitional point in the evolution of Indian policy.
Nez Percé Indians --- Big Hole, Battle of the, Mont., 1877. --- Wars, 1877. --- History --- Joseph, --- Nez Perc�e Indians --- Joseph --- Nez Perce Indians
Choose an application
This book is composed of 6 papers. The first paper reports a novel technique for the selective emitter formation by controlling the surface morphology of Si wafers. Selective emitter (SE) technology has attracted renewed attention in the Si solar cell industry to achieve an improved conversion efficiency of passivated-emitter rear-contact (PERC) cells. In the second paper, the temperature dependence of the parameters was compared through the PERC of the industrial-scale solar cells. As a result of their analysis, PERC cells showed different temperature dependence for the fill factor loss as temperatures rose. The third paper reports the effects of carrier selective front contact layer and defect state of hydrogenated amorphous silicon passivation layer/n-type crystalline silicon interface. The results demonstrated the effects of band offset determined by band bending at the interface of the passivation layer and carrier selective front contact layer. In addition, the nc-SiOx: H CSFC layer not only reduces parasitic absorption loss but also has a tunneling effect and field-effect passivation. The fourth paper reports excimer laser annealing of hydrogenated amorphous silicon film for TOPCon solar cell application. This paper analyzes the crystallization of a-Si:H via excimer laser annealing (ELA) and compared this process with conventional thermal annealing. The fifth paper reports the contact mechanism between Ag–Al and Si and the change in contact resistance (Rc) by varying the firing profile. Rc was measured by varying the belt speed and peak temperature of the fast-firing furnace. The sixth paper reports a silicon tandem heterojunction solar cell based on a ZnO/Cu2O subcell and a c-Si bottom subcell using electro-optical numerical modeling. The buffer layer affinity and mobility together with a low conduction band offset for the heterojunction are discussed, as well as spectral properties of the device model.
History of engineering & technology --- fill factor loss analysis --- double-diode model --- PERC --- temperature dependence --- recombination current density --- parasitic resistance --- carrier selective contact --- rear emitter heterojunction --- passivation --- crystallinity --- thermal annealing --- excimer laser annealing --- amorphous hydrogenated silicon film --- metallization --- contact formation --- Ag/Al paste --- p+ emitter --- N-type bifacial solar cells --- silicon tandem heterojunction solar cell --- N-doped Cu2O absorber layer --- Al:ZnO (AZO) --- numerical electro-optical modeling --- scanning electron microscopy (SEM) --- atomic force microscopy (AFM) --- X-ray diffraction (XRD) --- spectroscopic ellipsometry (SE) --- Fourier-transform infrared (FTIR) spectroscopy --- degradation degree --- failure rate --- selective emitter --- surface morphology --- doping process --- solar cell
Choose an application
This book is composed of 6 papers. The first paper reports a novel technique for the selective emitter formation by controlling the surface morphology of Si wafers. Selective emitter (SE) technology has attracted renewed attention in the Si solar cell industry to achieve an improved conversion efficiency of passivated-emitter rear-contact (PERC) cells. In the second paper, the temperature dependence of the parameters was compared through the PERC of the industrial-scale solar cells. As a result of their analysis, PERC cells showed different temperature dependence for the fill factor loss as temperatures rose. The third paper reports the effects of carrier selective front contact layer and defect state of hydrogenated amorphous silicon passivation layer/n-type crystalline silicon interface. The results demonstrated the effects of band offset determined by band bending at the interface of the passivation layer and carrier selective front contact layer. In addition, the nc-SiOx: H CSFC layer not only reduces parasitic absorption loss but also has a tunneling effect and field-effect passivation. The fourth paper reports excimer laser annealing of hydrogenated amorphous silicon film for TOPCon solar cell application. This paper analyzes the crystallization of a-Si:H via excimer laser annealing (ELA) and compared this process with conventional thermal annealing. The fifth paper reports the contact mechanism between Ag–Al and Si and the change in contact resistance (Rc) by varying the firing profile. Rc was measured by varying the belt speed and peak temperature of the fast-firing furnace. The sixth paper reports a silicon tandem heterojunction solar cell based on a ZnO/Cu2O subcell and a c-Si bottom subcell using electro-optical numerical modeling. The buffer layer affinity and mobility together with a low conduction band offset for the heterojunction are discussed, as well as spectral properties of the device model.
fill factor loss analysis --- double-diode model --- PERC --- temperature dependence --- recombination current density --- parasitic resistance --- carrier selective contact --- rear emitter heterojunction --- passivation --- crystallinity --- thermal annealing --- excimer laser annealing --- amorphous hydrogenated silicon film --- metallization --- contact formation --- Ag/Al paste --- p+ emitter --- N-type bifacial solar cells --- silicon tandem heterojunction solar cell --- N-doped Cu2O absorber layer --- Al:ZnO (AZO) --- numerical electro-optical modeling --- scanning electron microscopy (SEM) --- atomic force microscopy (AFM) --- X-ray diffraction (XRD) --- spectroscopic ellipsometry (SE) --- Fourier-transform infrared (FTIR) spectroscopy --- degradation degree --- failure rate --- selective emitter --- surface morphology --- doping process --- solar cell
Choose an application
This book is composed of 6 papers. The first paper reports a novel technique for the selective emitter formation by controlling the surface morphology of Si wafers. Selective emitter (SE) technology has attracted renewed attention in the Si solar cell industry to achieve an improved conversion efficiency of passivated-emitter rear-contact (PERC) cells. In the second paper, the temperature dependence of the parameters was compared through the PERC of the industrial-scale solar cells. As a result of their analysis, PERC cells showed different temperature dependence for the fill factor loss as temperatures rose. The third paper reports the effects of carrier selective front contact layer and defect state of hydrogenated amorphous silicon passivation layer/n-type crystalline silicon interface. The results demonstrated the effects of band offset determined by band bending at the interface of the passivation layer and carrier selective front contact layer. In addition, the nc-SiOx: H CSFC layer not only reduces parasitic absorption loss but also has a tunneling effect and field-effect passivation. The fourth paper reports excimer laser annealing of hydrogenated amorphous silicon film for TOPCon solar cell application. This paper analyzes the crystallization of a-Si:H via excimer laser annealing (ELA) and compared this process with conventional thermal annealing. The fifth paper reports the contact mechanism between Ag–Al and Si and the change in contact resistance (Rc) by varying the firing profile. Rc was measured by varying the belt speed and peak temperature of the fast-firing furnace. The sixth paper reports a silicon tandem heterojunction solar cell based on a ZnO/Cu2O subcell and a c-Si bottom subcell using electro-optical numerical modeling. The buffer layer affinity and mobility together with a low conduction band offset for the heterojunction are discussed, as well as spectral properties of the device model.
History of engineering & technology --- fill factor loss analysis --- double-diode model --- PERC --- temperature dependence --- recombination current density --- parasitic resistance --- carrier selective contact --- rear emitter heterojunction --- passivation --- crystallinity --- thermal annealing --- excimer laser annealing --- amorphous hydrogenated silicon film --- metallization --- contact formation --- Ag/Al paste --- p+ emitter --- N-type bifacial solar cells --- silicon tandem heterojunction solar cell --- N-doped Cu2O absorber layer --- Al:ZnO (AZO) --- numerical electro-optical modeling --- scanning electron microscopy (SEM) --- atomic force microscopy (AFM) --- X-ray diffraction (XRD) --- spectroscopic ellipsometry (SE) --- Fourier-transform infrared (FTIR) spectroscopy --- degradation degree --- failure rate --- selective emitter --- surface morphology --- doping process --- solar cell
Choose an application
Colloque organisé par la direction de l'architecture et du patrimoine du ministère de la culture et de la communication, en partenariat avec le groupe de recherche sur le droit du patrimoine culturel et naturel et l'association patrimoine rhônalpin.La protection et la mise en valeur du patrimoine culturel et naturel sont devenues une préoccupation de plus en plus partagée par les pouvoirs publics. Une double évolution se perçoit : longtemps demeurée élitiste, la protection du patrimoine s'est démocratisée. Longtemps demeurée étatiste, elle commence à se décentraliser. Les zones de protection du patrimoine architectural, urbain et paysager (ZPPAUP) sont une traduction de ce double mouvement. --- Zones de protection du patrimoine architectural, urbain et paysager --- Espaces protégés --- Patrimoine urbain --- Paysage --- Droit --- Patrimoine rural --- Cultural property --- Protection --- Law and legislation --- Architecture --- Farm buildings --- Monuments --- Biens culturels --- Conservation and restoration --- Conservation et restauration --- Colloque organisé par la direction de l'architecture et du patrimoine du ministère de la culture et de la communication, en partenariat avec le groupe de recherche sur le droit du patrimoine culturel et naturel et l'association patrimoine rhônalpin.La protection et la mise en valeur du patrimoine culturel et naturel sont devenues une préoccupation de plus en plus partagée par les pouvoirs publics. Une double évolution se perçoit : longtemps demeurée élitiste, la protection du patrimoine s'est démocratisée. Longtemps demeurée étatiste, elle commence à se décentraliser. Les zones de protection du patrimoine architectural, urbain et paysager (ZPPAUP) sont une traduction de ce double mouvement. --- Droit. --- Cultural property - Protection - Law and legislation - France.
Listing 1 - 5 of 5 |
Sort by
|