Listing 1 - 5 of 5 |
Sort by
|
Choose an application
The new frontier of pharmaceutical sciences is gene therapy, which is the use of molecules able to interact directly with the expression of the genetic material of the patient as well as of the disease-causing guest (bacteria, virus, parasites, and tumor cells). Among the molecules of interest for gene therapy, a relevant role is played by small interfering RNA (siRNA) molecules able to interfere with the expression of genes of interest for some diseases. However, siRNA molecules, even if they are powerful as drugs, are difficult to deliver since they are sensitive to enzymes present in plasma and they are large and negatively charged, so are difficult to administer into the cell nuclei, since the cell walls are scarcely permeable to large molecules and are also negatively charged. Therefore, the focus of research on siRNA-based therapies is their delivery, which can be performed by chemical modification, association with aptamers or polycations, or embedding them into properly designed liposomes. This book is centered on the more recent development in siRNA delivery techniques toward the clinical applications of this potent class of drugs.
oligonucleotide delivery --- light-activated release --- intracellular release --- liposome --- indocyanine green --- drug co-delivery --- methotrexate --- siRNA --- antitumor effect --- mixed micelles --- targeted delivery system --- cationic liposome --- folate --- folate receptor --- cationic cholesterol derivative --- siRNA delivery --- gene knockdown --- tumor-targeting --- VEGFA --- VEGFR1 --- endoglin --- peptide --- angiogenesis --- gene silencing --- migration --- proliferation --- endothelial cells --- RNAi therapeutics --- amphiphilic dendrons --- PAMAM dendrimers --- self-assembling --- nanovectors --- covalent dendrimers --- NABDs --- liposomes --- clinical trials --- drug delivery --- nanoparticle --- carbonate apatite --- ERBB2 --- AKT --- breast cancer --- ovarian cancer --- polymer --- lipid --- delivery --- poly(ethylene) imine --- PEI --- RNA --- tyrosine-modification --- tumor xenograft --- magnetic nanoparticle --- iron oxide --- BCL2 --- BIRC5/survivin --- oral cancer --- aptamers --- cancer --- nanoparticles --- STAT6 --- polyaspartamide --- pegylation --- polyamine --- polyplexes --- asthma --- n/a
Choose an application
The new frontier of pharmaceutical sciences is gene therapy, which is the use of molecules able to interact directly with the expression of the genetic material of the patient as well as of the disease-causing guest (bacteria, virus, parasites, and tumor cells). Among the molecules of interest for gene therapy, a relevant role is played by small interfering RNA (siRNA) molecules able to interfere with the expression of genes of interest for some diseases. However, siRNA molecules, even if they are powerful as drugs, are difficult to deliver since they are sensitive to enzymes present in plasma and they are large and negatively charged, so are difficult to administer into the cell nuclei, since the cell walls are scarcely permeable to large molecules and are also negatively charged. Therefore, the focus of research on siRNA-based therapies is their delivery, which can be performed by chemical modification, association with aptamers or polycations, or embedding them into properly designed liposomes. This book is centered on the more recent development in siRNA delivery techniques toward the clinical applications of this potent class of drugs.
Medicine --- oligonucleotide delivery --- light-activated release --- intracellular release --- liposome --- indocyanine green --- drug co-delivery --- methotrexate --- siRNA --- antitumor effect --- mixed micelles --- targeted delivery system --- cationic liposome --- folate --- folate receptor --- cationic cholesterol derivative --- siRNA delivery --- gene knockdown --- tumor-targeting --- VEGFA --- VEGFR1 --- endoglin --- peptide --- angiogenesis --- gene silencing --- migration --- proliferation --- endothelial cells --- RNAi therapeutics --- amphiphilic dendrons --- PAMAM dendrimers --- self-assembling --- nanovectors --- covalent dendrimers --- NABDs --- liposomes --- clinical trials --- drug delivery --- nanoparticle --- carbonate apatite --- ERBB2 --- AKT --- breast cancer --- ovarian cancer --- polymer --- lipid --- delivery --- poly(ethylene) imine --- PEI --- RNA --- tyrosine-modification --- tumor xenograft --- magnetic nanoparticle --- iron oxide --- BCL2 --- BIRC5/survivin --- oral cancer --- aptamers --- cancer --- nanoparticles --- STAT6 --- polyaspartamide --- pegylation --- polyamine --- polyplexes --- asthma
Choose an application
Dear Colleagues,Supramolecular systems (calixarenes, cyclodextrins, polymers, peptides, etc.) have attracted special attention due to their excellent therapeutic properties for biomedical applications such as gene and drug delivery. Numerous biomaterials-based supramolecular systems have been developed in the last decade for enhancing of biocompatibility and pharmacological activity. In particular, supramolecular nanomaterials are considered a hot research topic, because nanomedicine has become an interesting tool for the treatment of genetic diseases or cancer. Nevertheless, novel systems and their properties are being continuously studied, contributing to the development of efficient delivery systems.This Special Issue provides and highlights current progress in the use of the supramolecular systems for boosting gene and drug delivery. Preparation, characterization, and use of these systems, as well as the latest developments in this research field, are especially welcome.Authors are encorauged to submit original research articles and reviews in this promising research field.
Research & information: general --- Chemistry --- β-cyclodextrin-based nanosponge --- phenylethylamine --- 2-amino-4-(4-chlorophenyl)thiazole (AT) --- gold nanoparticles --- carrier of therapeutic agents --- ferritin --- drug delivery --- tumor targeting --- half-life extension --- PAMAM dendrimers --- folic acid --- mRNA --- gene expression --- long acting injectables --- poly(l-lactic acid) --- poly(butylene adipate) --- block copolymers --- aripiprazole --- microparticles --- sustained release --- cationic calix[4]arenes --- liposomes --- nucleic acids --- transfection efficiency --- doxorubicin --- encapsulation --- adenine–uracil base pair --- complementary hydrogen bonded drug carrier system --- controlled drug delivery --- supramolecular nanogels --- selective cytotoxicity --- supramolecular self-assembled ribbon-like structures (SRLS) --- Congo red (CR) --- doxorubicin (Dox) --- bovine serum albumin (BSA) --- immunoglobulin light chain λ (Lλ) --- heat aggregated immunoglobulins (HAI) --- dynamic light scattering (DLS) --- elution volume (Ve) --- multi-walled carbon nanotube --- photothermal therapy --- indocyanine green --- synergistic strategy --- cancer treatment --- targeted drug delivery --- pillararene --- host:guest --- supramolecular --- hydrophobic --- ITC --- NMR --- magnetoliposomes --- microfluidics --- oral drug delivery --- magnetite nanoparticles --- n/a --- adenine-uracil base pair
Choose an application
Dear Colleagues,Supramolecular systems (calixarenes, cyclodextrins, polymers, peptides, etc.) have attracted special attention due to their excellent therapeutic properties for biomedical applications such as gene and drug delivery. Numerous biomaterials-based supramolecular systems have been developed in the last decade for enhancing of biocompatibility and pharmacological activity. In particular, supramolecular nanomaterials are considered a hot research topic, because nanomedicine has become an interesting tool for the treatment of genetic diseases or cancer. Nevertheless, novel systems and their properties are being continuously studied, contributing to the development of efficient delivery systems.This Special Issue provides and highlights current progress in the use of the supramolecular systems for boosting gene and drug delivery. Preparation, characterization, and use of these systems, as well as the latest developments in this research field, are especially welcome.Authors are encorauged to submit original research articles and reviews in this promising research field.
β-cyclodextrin-based nanosponge --- phenylethylamine --- 2-amino-4-(4-chlorophenyl)thiazole (AT) --- gold nanoparticles --- carrier of therapeutic agents --- ferritin --- drug delivery --- tumor targeting --- half-life extension --- PAMAM dendrimers --- folic acid --- mRNA --- gene expression --- long acting injectables --- poly(l-lactic acid) --- poly(butylene adipate) --- block copolymers --- aripiprazole --- microparticles --- sustained release --- cationic calix[4]arenes --- liposomes --- nucleic acids --- transfection efficiency --- doxorubicin --- encapsulation --- adenine–uracil base pair --- complementary hydrogen bonded drug carrier system --- controlled drug delivery --- supramolecular nanogels --- selective cytotoxicity --- supramolecular self-assembled ribbon-like structures (SRLS) --- Congo red (CR) --- doxorubicin (Dox) --- bovine serum albumin (BSA) --- immunoglobulin light chain λ (Lλ) --- heat aggregated immunoglobulins (HAI) --- dynamic light scattering (DLS) --- elution volume (Ve) --- multi-walled carbon nanotube --- photothermal therapy --- indocyanine green --- synergistic strategy --- cancer treatment --- targeted drug delivery --- pillararene --- host:guest --- supramolecular --- hydrophobic --- ITC --- NMR --- magnetoliposomes --- microfluidics --- oral drug delivery --- magnetite nanoparticles --- n/a --- adenine-uracil base pair
Choose an application
Dear Colleagues,Supramolecular systems (calixarenes, cyclodextrins, polymers, peptides, etc.) have attracted special attention due to their excellent therapeutic properties for biomedical applications such as gene and drug delivery. Numerous biomaterials-based supramolecular systems have been developed in the last decade for enhancing of biocompatibility and pharmacological activity. In particular, supramolecular nanomaterials are considered a hot research topic, because nanomedicine has become an interesting tool for the treatment of genetic diseases or cancer. Nevertheless, novel systems and their properties are being continuously studied, contributing to the development of efficient delivery systems.This Special Issue provides and highlights current progress in the use of the supramolecular systems for boosting gene and drug delivery. Preparation, characterization, and use of these systems, as well as the latest developments in this research field, are especially welcome.Authors are encorauged to submit original research articles and reviews in this promising research field.
Research & information: general --- Chemistry --- β-cyclodextrin-based nanosponge --- phenylethylamine --- 2-amino-4-(4-chlorophenyl)thiazole (AT) --- gold nanoparticles --- carrier of therapeutic agents --- ferritin --- drug delivery --- tumor targeting --- half-life extension --- PAMAM dendrimers --- folic acid --- mRNA --- gene expression --- long acting injectables --- poly(l-lactic acid) --- poly(butylene adipate) --- block copolymers --- aripiprazole --- microparticles --- sustained release --- cationic calix[4]arenes --- liposomes --- nucleic acids --- transfection efficiency --- doxorubicin --- encapsulation --- adenine-uracil base pair --- complementary hydrogen bonded drug carrier system --- controlled drug delivery --- supramolecular nanogels --- selective cytotoxicity --- supramolecular self-assembled ribbon-like structures (SRLS) --- Congo red (CR) --- doxorubicin (Dox) --- bovine serum albumin (BSA) --- immunoglobulin light chain λ (Lλ) --- heat aggregated immunoglobulins (HAI) --- dynamic light scattering (DLS) --- elution volume (Ve) --- multi-walled carbon nanotube --- photothermal therapy --- indocyanine green --- synergistic strategy --- cancer treatment --- targeted drug delivery --- pillararene --- host:guest --- supramolecular --- hydrophobic --- ITC --- NMR --- magnetoliposomes --- microfluidics --- oral drug delivery --- magnetite nanoparticles
Listing 1 - 5 of 5 |
Sort by
|