Listing 1 - 10 of 27 << page
of 3
>>
Sort by

Book
Einfuhrung in die Analysis 3
Author:
ISBN: 1283398400 3110214849 9786613398406 Year: 2009 Publisher: Berlin : De Gruyter,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This textbook for the basic lecture course of the same name deals with selected topics of multidimensional analysis. It is also an introduction to the theory of ordinary differential equations and the Fourier theory, of importance in the application of image processing and acoustics.


Book
Painlevé Equations and Related Topics
Authors: --- --- --- --- --- et al.
ISBN: 1283628414 9786613940865 311027566X 9783110275582 3110275589 9783110275667 9783110275674 3110275678 9781283628419 Year: 2012 Publisher: Berlin Boston

Loading...
Export citation

Choose an application

Bookmark

Abstract

This is a proceedings of the international conference "Painlevé Equations and Related Topics" which was taking place at the Euler International Mathematical Institute, a branch of the Saint Petersburg Department of the Steklov Institute of Mathematics of the Russian Academy of Sciences, in Saint Petersburg on June 17 to 23, 2011. The survey articles discuss the following topics: General ordinary differential equations Painlevé equations and their generalizations Painlevé property Discrete Painlevé equations Properties of solutions of all mentioned above equations:- Asymptotic forms and asymptotic expansions- Connections of asymptotic forms of a solution near different points- Convergency and asymptotic character of a formal solution- New types of asymptotic forms and asymptotic expansions- Riemann-Hilbert problems- Isomonodromic deformations of linear systems- Symmetries and transformations of solutions- Algebraic solutions Reductions of PDE to Painlevé equations and their generalizations Ordinary Differential Equations systems equivalent to Painlevé equations and their generalizations Applications of the equations and the solutions


Book
Numerical Methods for Solving Inverse Problems of Mathematical Physics
Authors: ---
ISBN: 1282196553 9786612196553 3110205793 9783110205794 3110196662 9783110196665 Year: 2008 Publisher: Berlin Boston

Loading...
Export citation

Choose an application

Bookmark

Abstract

The main classes of inverse problems for equations of mathematical physics and their numerical solution methods are considered in this book which is intended for graduate students and experts in applied mathematics, computational mathematics, and mathematical modeling.

Matched asymptotic expansions and singular perturbations.
Author:
ISBN: 0720426065 0444104380 0444104380 9786611773359 1281773352 0080871178 9780444104380 9780080871172 9781281773357 6611773355 9780720426069 Year: 1973 Volume: 6 Publisher: Amsterdam New York North-Holland Pub. Co. American Elsevier Pub. Co.


Book
New developments in Functional and Fractional Differential Equations and in Lie Symmetry
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Delay, difference, functional, fractional, and partial differential equations have many applications in science and engineering. In this Special Issue, 29 experts co-authored 10 papers dealing with these subjects. A summary of the main points of these papers follows:Several oscillation conditions for a first-order linear differential equation with non-monotone delay are established in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, whereas a sharp oscillation criterion using the notion of slowly varying functions is established in A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay. The approximation of a linear autonomous differential equation with a small delay is considered in Approximation of a Linear Autonomous Differential Equation with Small Delay; the model of infection diseases by Marchuk is studied in Around the Model of Infection Disease: The Cauchy Matrix and Its Properties. Exact solutions to fractional-order Fokker–Planck equations are presented in New Exact Solutions and Conservation Laws to the Fractional-Order Fokker–Planck Equations, and a spectral collocation approach to solving a class of time-fractional stochastic heat equations driven by Brownian motion is constructed in A Collocation Approach for Solving Time-Fractional Stochastic Heat Equation Driven by an Additive Noise. A finite difference approximation method for a space fractional convection-diffusion model with variable coefficients is proposed in Finite Difference Approximation Method for a Space Fractional Convection–Diffusion Equation with Variable Coefficients; existence results for a nonlinear fractional difference equation with delay and impulses are established in On Nonlinear Fractional Difference Equation with Delay and Impulses. A complete Noether symmetry analysis of a generalized coupled Lane–Emden–Klein–Gordon–Fock system with central symmetry is provided in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, and new soliton solutions of a fractional Jaulent soliton Miodek system via symmetry analysis are presented in New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis.


Book
New developments in Functional and Fractional Differential Equations and in Lie Symmetry
Authors: ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Delay, difference, functional, fractional, and partial differential equations have many applications in science and engineering. In this Special Issue, 29 experts co-authored 10 papers dealing with these subjects. A summary of the main points of these papers follows:Several oscillation conditions for a first-order linear differential equation with non-monotone delay are established in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, whereas a sharp oscillation criterion using the notion of slowly varying functions is established in A Sharp Oscillation Criterion for a Linear Differential Equation with Variable Delay. The approximation of a linear autonomous differential equation with a small delay is considered in Approximation of a Linear Autonomous Differential Equation with Small Delay; the model of infection diseases by Marchuk is studied in Around the Model of Infection Disease: The Cauchy Matrix and Its Properties. Exact solutions to fractional-order Fokker–Planck equations are presented in New Exact Solutions and Conservation Laws to the Fractional-Order Fokker–Planck Equations, and a spectral collocation approach to solving a class of time-fractional stochastic heat equations driven by Brownian motion is constructed in A Collocation Approach for Solving Time-Fractional Stochastic Heat Equation Driven by an Additive Noise. A finite difference approximation method for a space fractional convection-diffusion model with variable coefficients is proposed in Finite Difference Approximation Method for a Space Fractional Convection–Diffusion Equation with Variable Coefficients; existence results for a nonlinear fractional difference equation with delay and impulses are established in On Nonlinear Fractional Difference Equation with Delay and Impulses. A complete Noether symmetry analysis of a generalized coupled Lane–Emden–Klein–Gordon–Fock system with central symmetry is provided in Oscillation Criteria for First Order Differential Equations with Non-Monotone Delays, and new soliton solutions of a fractional Jaulent soliton Miodek system via symmetry analysis are presented in New Soliton Solutions of Fractional Jaulent-Miodek System with Symmetry Analysis.

Keywords

Research & information: general --- Mathematics & science --- integro–differential systems --- Cauchy matrix --- exponential stability --- distributed control --- delay differential equation --- ordinary differential equation --- asymptotic equivalence --- approximation --- eigenvalue --- oscillation --- variable delay --- deviating argument --- non-monotone argument --- slowly varying function --- Crank–Nicolson scheme --- Shifted Grünwald–Letnikov approximation --- space fractional convection-diffusion model --- variable coefficients --- stability analysis --- Lane-Emden-Klein-Gordon-Fock system with central symmetry --- Noether symmetries --- conservation laws --- differential equations --- non-monotone delays --- fractional calculus --- stochastic heat equation --- additive noise --- chebyshev polynomials of sixth kind --- error estimate --- fractional difference equations --- delay --- impulses --- existence --- fractional Jaulent-Miodek (JM) system --- fractional logistic function method --- symmetry analysis --- lie point symmetry analysis --- approximate conservation laws --- approximate nonlinear self-adjointness --- perturbed fractional differential equations --- integro–differential systems --- Cauchy matrix --- exponential stability --- distributed control --- delay differential equation --- ordinary differential equation --- asymptotic equivalence --- approximation --- eigenvalue --- oscillation --- variable delay --- deviating argument --- non-monotone argument --- slowly varying function --- Crank–Nicolson scheme --- Shifted Grünwald–Letnikov approximation --- space fractional convection-diffusion model --- variable coefficients --- stability analysis --- Lane-Emden-Klein-Gordon-Fock system with central symmetry --- Noether symmetries --- conservation laws --- differential equations --- non-monotone delays --- fractional calculus --- stochastic heat equation --- additive noise --- chebyshev polynomials of sixth kind --- error estimate --- fractional difference equations --- delay --- impulses --- existence --- fractional Jaulent-Miodek (JM) system --- fractional logistic function method --- symmetry analysis --- lie point symmetry analysis --- approximate conservation laws --- approximate nonlinear self-adjointness --- perturbed fractional differential equations

Harmonic Maps and Minimal Immersions with Symmetries (AM-130), Volume 130 : Methods of Ordinary Differential Equations Applied to Elliptic Variational Problems. (AM-130)
Authors: ---
ISBN: 0691033218 069110249X 1400882508 9780691033211 9780691102498 Year: 2016 Volume: 130 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The aim of this book is to study harmonic maps, minimal and parallel mean curvature immersions in the presence of symmetry. In several instances, the latter permits reduction of the original elliptic variational problem to the qualitative study of certain ordinary differential equations: the authors' primary objective is to provide representative examples to illustrate these reduction methods and their associated analysis with geometric and topological applications. The material covered by the book displays a solid interplay involving geometry, analysis and topology: in particular, it includes a basic presentation of 1-cohomogeneous equivariant differential geometry and of the theory of harmonic maps between spheres.

Keywords

Cartes harmoniques --- Harmonic maps --- Harmonische kaarten --- Immersies (Wiskunde) --- Immersions (Mathematics) --- Immersions (Mathématiques) --- Harmonic maps. --- Differential equations, Elliptic --- Applications harmoniques --- Immersions (Mathematiques) --- Équations différentielles elliptiques --- Numerical solutions. --- Solutions numériques --- Équations différentielles elliptiques --- Solutions numériques --- Differential equations [Elliptic] --- Numerical solutions --- Embeddings (Mathematics) --- Manifolds (Mathematics) --- Mappings (Mathematics) --- Maps, Harmonic --- Arc length. --- Catenary. --- Clifford algebra. --- Codimension. --- Coefficient. --- Compact space. --- Complex projective space. --- Connected sum. --- Constant curvature. --- Corollary. --- Covariant derivative. --- Curvature. --- Cylinder (geometry). --- Degeneracy (mathematics). --- Diagram (category theory). --- Differential equation. --- Differential geometry. --- Elliptic partial differential equation. --- Embedding. --- Energy functional. --- Equation. --- Existence theorem. --- Existential quantification. --- Fiber bundle. --- Gauss map. --- Geometry and topology. --- Geometry. --- Gravitational field. --- Harmonic map. --- Hyperbola. --- Hyperplane. --- Hypersphere. --- Hypersurface. --- Integer. --- Iterative method. --- Levi-Civita connection. --- Lie group. --- Mathematics. --- Maximum principle. --- Mean curvature. --- Normal (geometry). --- Numerical analysis. --- Open set. --- Ordinary differential equation. --- Parabola. --- Quadratic form. --- Sign (mathematics). --- Special case. --- Stiefel manifold. --- Submanifold. --- Suggestion. --- Surface of revolution. --- Symmetry. --- Tangent bundle. --- Theorem. --- Vector bundle. --- Vector space. --- Vertical tangent. --- Winding number. --- Differential equations, Elliptic - Numerical solutions


Book
Methods in Computational Biology
Authors: ---
ISBN: 3039211641 3039211633 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Modern biology is rapidly becoming a study of large sets of data. Understanding these data sets is a major challenge for most life sciences, including the medical, environmental, and bioprocess fields. Computational biology approaches are essential for leveraging this ongoing revolution in omics data. A primary goal of this Special Issue, entitled “Methods in Computational Biology”, is the communication of computational biology methods, which can extract biological design principles from complex data sets, described in enough detail to permit the reproduction of the results. This issue integrates interdisciplinary researchers such as biologists, computer scientists, engineers, and mathematicians to advance biological systems analysis. The Special Issue contains the following sections:•Reviews of Computational Methods•Computational Analysis of Biological Dynamics: From Molecular to Cellular to Tissue/Consortia Levels•The Interface of Biotic and Abiotic Processes•Processing of Large Data Sets for Enhanced Analysis•Parameter Optimization and Measurement


Book
Creating Symmetry : The Artful Mathematics of Wallpaper Patterns
Author:
Year: 2015 Publisher: Princeton, NJ : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This lavishly illustrated book provides a hands-on, step-by-step introduction to the intriguing mathematics of symmetry. Instead of breaking up patterns into blocks-a sort of potato-stamp method-Frank Farris offers a completely new waveform approach that enables you to create an endless variety of rosettes, friezes, and wallpaper patterns: dazzling art images where the beauty of nature meets the precision of mathematics.Featuring more than 100 stunning color illustrations and requiring only a modest background in math, Creating Symmetry begins by addressing the enigma of a simple curve, whose curious symmetry seems unexplained by its formula. Farris describes how complex numbers unlock the mystery, and how they lead to the next steps on an engaging path to constructing waveforms. He explains how to devise waveforms for each of the 17 possible wallpaper types, and then guides you through a host of other fascinating topics in symmetry, such as color-reversing patterns, three-color patterns, polyhedral symmetry, and hyperbolic symmetry. Along the way, Farris demonstrates how to marry waveforms with photographic images to construct beautiful symmetry patterns as he gradually familiarizes you with more advanced mathematics, including group theory, functional analysis, and partial differential equations. As you progress through the book, you'll learn how to create breathtaking art images of your own.Fun, accessible, and challenging, Creating Symmetry features numerous examples and exercises throughout, as well as engaging discussions of the history behind the mathematics presented in the book.

Keywords

Symmetry (Mathematics) --- Symmetry (Art) --- Abstract algebra. --- Addition. --- Algorithm. --- Antisymmetry. --- Arc length. --- Boundary value problem. --- Cartesian coordinate system. --- Circular motion. --- Circumference. --- Coefficient. --- Complex analysis. --- Complex multiplication. --- Complex number. --- Complex plane. --- Computation. --- Coordinate system. --- Coset. --- Cyclic group. --- Derivative. --- Diagonal. --- Diagram (category theory). --- Dihedral group. --- Division by zero. --- Domain coloring. --- Dot product. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Eisenstein integer. --- Epicycloid. --- Equation. --- Euler's formula. --- Even and odd functions. --- Exponential function. --- Fourier series. --- Frieze group. --- Function (mathematics). --- Function composition. --- Function space. --- Gaussian integer. --- Geometry. --- Glide reflection. --- Group (mathematics). --- Group theory. --- Homomorphism. --- Horocycle. --- Hyperbolic geometry. --- Ideal point. --- Integer. --- Lattice (group). --- Linear interpolation. --- Local symmetry. --- M. C. Escher. --- Main diagonal. --- Mathematical proof. --- Mathematical structure. --- Mathematics. --- Mirror symmetry (string theory). --- Mirror symmetry. --- Morphing. --- Natural number. --- Normal subgroup. --- Notation. --- Ordinary differential equation. --- Parallelogram. --- Parametric equation. --- Parametrization. --- Periodic function. --- Plane symmetry. --- Plane wave. --- Point group. --- Polynomial. --- Power series. --- Projection (linear algebra). --- Pythagorean triple. --- Quantity. --- Quotient group. --- Real number. --- Reciprocal lattice. --- Rectangle. --- Reflection symmetry. --- Right angle. --- Ring of integers. --- Rotational symmetry. --- Scientific notation. --- Special case. --- Square lattice. --- Subgroup. --- Summation. --- Symmetry group. --- Symmetry. --- Tetrahedron. --- Theorem. --- Translational symmetry. --- Trigonometric functions. --- Unique factorization domain. --- Unit circle. --- Variable (mathematics). --- Vector space. --- Wallpaper group. --- Wave packet. --- Abstract algebra. --- Addition. --- Algorithm. --- Antisymmetry. --- Arc length. --- Boundary value problem. --- Cartesian coordinate system. --- Circular motion. --- Circumference. --- Coefficient. --- Complex analysis. --- Complex multiplication. --- Complex number. --- Complex plane. --- Computation. --- Coordinate system. --- Coset. --- Cyclic group. --- Derivative. --- Diagonal. --- Diagram (category theory). --- Dihedral group. --- Division by zero. --- Domain coloring. --- Dot product. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Eisenstein integer. --- Epicycloid. --- Equation. --- Euler's formula. --- Even and odd functions. --- Exponential function. --- Fourier series. --- Frieze group. --- Function (mathematics). --- Function composition. --- Function space. --- Gaussian integer. --- Geometry. --- Glide reflection. --- Group (mathematics). --- Group theory. --- Homomorphism. --- Horocycle. --- Hyperbolic geometry. --- Ideal point. --- Integer. --- Lattice (group). --- Linear interpolation. --- Local symmetry. --- M. C. Escher. --- Main diagonal. --- Mathematical proof. --- Mathematical structure. --- Mathematics. --- Mirror symmetry (string theory). --- Mirror symmetry. --- Morphing. --- Natural number. --- Normal subgroup. --- Notation. --- Ordinary differential equation. --- Parallelogram. --- Parametric equation. --- Parametrization. --- Periodic function. --- Plane symmetry. --- Plane wave. --- Point group. --- Polynomial. --- Power series. --- Projection (linear algebra). --- Pythagorean triple. --- Quantity. --- Quotient group. --- Real number. --- Reciprocal lattice. --- Rectangle. --- Reflection symmetry. --- Right angle. --- Ring of integers. --- Rotational symmetry. --- Scientific notation. --- Special case. --- Square lattice. --- Subgroup. --- Summation. --- Symmetry group. --- Symmetry. --- Tetrahedron. --- Theorem. --- Translational symmetry. --- Trigonometric functions. --- Unique factorization domain. --- Unit circle. --- Variable (mathematics). --- Vector space. --- Wallpaper group. --- Wave packet.

Listing 1 - 10 of 27 << page
of 3
>>
Sort by