Narrow your search

Library

ULiège (2)

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

UGent (1)

ULB (1)

More...

Resource type

book (2)


Language

English (2)


Year
From To Submit

2014 (1)

2007 (1)

Listing 1 - 2 of 2
Sort by

Book
Nanophotonic Devices for Linear and Nonlinear Optical Signal Processing
Author:
ISBN: 1000007120 3866441789 Year: 2007 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

High index-contrast nanophotonic devices are key components for future board-to-board and chip-to-chip optical interconnects: The strong confinement of light enables dense integration, and nonlinear effects can be exploited at low power levels. Cheap large-scale production is possible by using highly parallel microfabrication techniques, and semiconductor-based nanophotonic devices can be integrated together with electronic circuitry on a common chip. Particularly intense research is carried out to realise optical devices on silicon substrates, using mature complementary metal-oxide-semiconductor (CMOS) fabrication techniques.This book discusses the modelling, fabrication and characterization of linear and nonlinear nanophotonic devices. Roughness-related scattering loss in high index-contrast waveguides is investigated both theoretically and experimentally, and methods of loss reduction are developed. Novel silicon-based devices for electro-optic modulation and for all-optical signal processing are presented. Nonlinear dynamics in active quantum-dot devices are studied, and resonant field enhancement is exploited to improve the efficiency of nonlinear interaction.


Book
Real-time Digital Signal Processing for Software-defined Optical Transmitters and Receivers
Author:
Year: 2014 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

A software-defined optical Tx is designed and demonstrated generating signals with various formats and pulse-shapes in real-time. Special pulse-shapes such as OFDM or Nyquist signaling were utilized resulting in a highly efficient usage of the available fiber channel bandwidth. This was achieved by parallel data processing with high-end FPGAs. Furthermore, highly efficient Rx algorithms for carrier and timing recovery as well as for polarization demultiplexing were developed and investigated.

Listing 1 - 2 of 2
Sort by