Listing 1 - 10 of 374 | << page >> |
Sort by
|
Choose an application
Choose an application
Choose an application
The quest for the optimal is ubiquitous in nature and human behavior. The field of mathematical optimization has a long history and remains active today, particularly in the development of machine learning. Classical and Modern Optimization presents a self-contained overview of classical and modern ideas and methods in approaching optimization problems. The approach is rich and flexible enough to address smooth and non-smooth, convex and non-convex, finite or infinite-dimensional, static or dynamic situations. The first chapters of the book are devoted to the classical toolbox: topology and functional analysis, differential calculus, convex analysis and necessary conditions for differentiable constrained optimization. The remaining chapters are dedicated to more specialized topics and applications. Valuable to a wide audience, including students in mathematics, engineers, data scientists or economists, Classical and Modern Optimization contains more than 200 exercises to assist with self-study or for anyone teaching a third- or fourth-year optimization class.
Choose an application
Choose an application
Choose an application
Choose an application
Every engineer and decision scientist must have a good mastery of optimization, an essential element in their toolkit. Thus, this articulate introductory textbook will certainly be welcomed by students and practicing professionals alike. Drawing from his vast teaching experience, the author skillfully leads the reader through a rich choice of topics in a coherent, fluid and tasteful blend of models and methods anchored on the underlying mathematical notions (only prerequisites: first year calculus and linear algebra). Topics range from the classics to some of the most recent developments in smooth unconstrained and constrained optimization, like descent methods, conjugate gradients, Newton and quasi-Newton methods, linear programming and the simplex method, trust region and interior point methods. Furthermore elements of discrete and combinatorial optimization like network optimization, integer programming and heuristic local search methods are also presented. This book presents optimization as a modeling tool that beyond supporting problem formulation plus design and implementation of efficient algorithms, also is a language suited for interdisciplinary human interaction. Readers further become aware that while the roots of mathematical optimization go back to the work of giants like Newton, Lagrange, Cauchy, Euler or Gauss, it did not become a discipline on its own until World War Two. Also that its present momentum really resulted from its symbiosis with modern computers, which made it possible to routinely solve problems with millions of variables and constraints. With his witty, entertaining, yet precise style, Michel Bierlaire captivates his readers and awakens their desire to try out the presented material in a creative mode. One of the outstanding assets of this book is the unified, clear and concise rendering of the various algorithms, which makes them easily readable and translatable into any high level programming language. [source éditeur]
Choose an application
Choose an application
Choose an application
Listing 1 - 10 of 374 | << page >> |
Sort by
|