Listing 1 - 10 of 34 << page
of 4
>>
Sort by

Book
Optical tweezers : principles and applications
Authors: --- ---
ISBN: 1316418219 1316419967 1107279712 Year: 2015 Publisher: Cambridge : Cambridge University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Combining state-of-the-art research with a strong pedagogic approach, this text provides a detailed and complete guide to the theory, practice and applications of optical tweezers. In-depth derivation of the theory of optical trapping and numerical modelling of optical forces are supported by a complete step-by-step design and construction guide for building optical tweezers, with detailed tutorials on collecting and analysing data. Also included are comprehensive reviews of optical tweezers research in fields ranging from cell biology to quantum physics. Featuring numerous exercises and problems throughout, this is an ideal self-contained learning package for advanced lecture and laboratory courses, and an invaluable guide to practitioners wanting to enter the field of optical manipulation. The text is supplemented by www.opticaltweezers.org, a forum for discussion and a source of additional material including free-to-download, customisable research-grade software (OTS) for calculation of optical forces, digital video microscopy, optical tweezers calibration and holographic optical tweezers.


Book
Autonomous robot-aided optical manipulation for biological cells
Author:
ISBN: 0128234490 0128235926 9780128235928 9780128234495 Year: 2021 Publisher: [Place of publication not identified] Academic Press

Loading...
Export citation

Choose an application

Bookmark

Abstract

"Autonomous Robot-Aided Optical Manipulation for Biological Cells gives a systematically and almost self-contained description of the many facets of modeling, sensing, and control techniques or experimentally exploring emerging trends in optical manipulation of biological cell in micro/nanorobotics systems. To achieve biomedical applications, reliability design, modeling, and precision control are vitally important for the development of engineering systems. With the advances in modeling, sensing, and control techniques, it is opportunistic to exploit them for the benefit of reliability design, actuation, and precision control of micro/nanomanipulation systems to expanding the applications of robot at the micro and nano scales, especially in biomedical engineering. This book presents new techniques in reliability modeling and advanced control of robot-aided optical manipulation of biological cells systems. The book will be beneficial to the researchers within robotics, mechatronics, biomedical engineering, and automatic control society, including both academic and industrial parts"--Page 4 of cover.


Book
Intermediate Filament Mechanics Across Scales : From Single Filaments to Single Interactions and Networks in Cells
Author:
Year: 2022 Publisher: [Place of publication not identified] : Universitätsverlag Göttingen,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The mechanical properties of cells are largely determined by the cytoskeleton. The cytoskeleton is an intricate and complex structure formed by protein filaments, motor proteins, and crosslinkers. The three main types of protein filaments are microtubules, actin filaments, and intermediate filaments ( IFs ). Whereas the proteins that form microtubules and actin filaments are exceptionally conserved throughout cell types and organisms, the family of IFs is diverse. For example, the IF protein vimentin is expressed in relatively motile fibroblasts, and keratin IFs are found in epithelial cells. This variety of IF proteins might therefore be linked to the various mechanical properties of different cell types. In the scope of this thesis, I combine studies of IF mechanics on different time scales and in systems of increasing complexity, from single filaments to networks in cells. This multiscale approach allows for the simplification necessary to interpret observations while adding increasing physiological context in subsequent experiments. We especially focus on the tunability of the IF mechanics by environmental cues in these increasingly complex systems. In a series of experiments, including single filament elongation studies, single filament stretching measurements with optical tweezers, filament-filament interaction measurements with four optical tweezers, microrheology, and isotropic cell stretching, we characterize how electrostatic (pH and ion concentration) and hydrophobic interactions (detergent) provide various mechanisms by which the mechanics of the IF cytoskeleton can be tuned. These studies reveal how small changes, such as charge shifts, influence IF mechanics on multiple scales. In combination with simulations, we determine the mechanisms by which charge shifts alter single vimentin filament mechanics and we extract energy landscapes for interactions between single filaments. Such insights will provide a deeper understanding of the mechanisms by which cells can maintain their integrity and adapt to the mechanical requirements set by their environment.


Book
Intermediate Filament Mechanics Across Scales : From Single Filaments to Single Interactions and Networks in Cells
Author:
Year: 2022 Publisher: [Place of publication not identified] : Universitätsverlag Göttingen,

Loading...
Export citation

Choose an application

Bookmark

Abstract

The mechanical properties of cells are largely determined by the cytoskeleton. The cytoskeleton is an intricate and complex structure formed by protein filaments, motor proteins, and crosslinkers. The three main types of protein filaments are microtubules, actin filaments, and intermediate filaments ( IFs ). Whereas the proteins that form microtubules and actin filaments are exceptionally conserved throughout cell types and organisms, the family of IFs is diverse. For example, the IF protein vimentin is expressed in relatively motile fibroblasts, and keratin IFs are found in epithelial cells. This variety of IF proteins might therefore be linked to the various mechanical properties of different cell types. In the scope of this thesis, I combine studies of IF mechanics on different time scales and in systems of increasing complexity, from single filaments to networks in cells. This multiscale approach allows for the simplification necessary to interpret observations while adding increasing physiological context in subsequent experiments. We especially focus on the tunability of the IF mechanics by environmental cues in these increasingly complex systems. In a series of experiments, including single filament elongation studies, single filament stretching measurements with optical tweezers, filament-filament interaction measurements with four optical tweezers, microrheology, and isotropic cell stretching, we characterize how electrostatic (pH and ion concentration) and hydrophobic interactions (detergent) provide various mechanisms by which the mechanics of the IF cytoskeleton can be tuned. These studies reveal how small changes, such as charge shifts, influence IF mechanics on multiple scales. In combination with simulations, we determine the mechanisms by which charge shifts alter single vimentin filament mechanics and we extract energy landscapes for interactions between single filaments. Such insights will provide a deeper understanding of the mechanisms by which cells can maintain their integrity and adapt to the mechanical requirements set by their environment.


Book
Single Molecule Analysis : Methods and Protocols
Authors: --- ---
ISBN: 1071633775 1071633767 Year: 2024 Publisher: Springer US

Loading...
Export citation

Choose an application

Bookmark

Abstract

This third edition volume expands on the previous editions with new discussions on the latest techniques and developments in the field. The chapters in this book are organized into four parts, and cover topics such as optical tweezers; single-molecule fluorescence tools; atomic force microscopy; magnetic tweezers; applications to virus protein shells, unfolding of proteins, nucleic acids, motor proteins, in vivo and in vitro; and protocols to establish specific surface interactions and perform force calibration. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls.
Cutting-edge and thorough, Single Molecule Analysis: Methods and Protocols, Third Edition is a valuable resource for all researchers who want to learn more about this exciting and still expanding field. Chapters 2, 7, 8, 9, 12, 18, and 19 are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com. 

Book
Fundamental tests of physics with optically trapped microspheres
Author:
ISBN: 1461460301 146146031X 1283910055 Year: 2013 Publisher: New York : Springer,

Loading...
Export citation

Choose an application

Bookmark

Abstract

Fundamental Tests of Physics with Optically Trapped Microspheres details experiments on studying the Brownian motion of an optically trapped microsphere with ultrahigh resolution and the cooling of its motion towards the quantum ground state. Glass microspheres were trapped in water, air, and vacuum with optical tweezers; and a detection system that can monitor the position of a trapped microsphere with Angstrom spatial resolution and microsecond temporal resolution was developed to study the Brownian motion of a trapped microsphere in air over a wide range of pressures. The instantaneous velocity of a Brownian particle, in particular, was measured for the very first time, and the results provide direct verification of the Maxwell-Boltzmann velocity distribution and the energy equipartition theorem for a Brownian particle. For short time scales, the ballistic regime of Brownian motion is observed, in contrast to the usual diffusive regime. In vacuum, active feedback is used to cool the center-of-mass motion of an optically trapped microsphere from room temperature to a minimum temperature of about 1.5 mK. This is an important step toward studying the quantum behaviors of a macroscopic particle trapped in vacuum.


Book
Lasers and their applications
Author:
ISBN: 0850660459 9780850660456 Year: 1971 Publisher: London Taylor and Francis

Listing 1 - 10 of 34 << page
of 4
>>
Sort by