Narrow your search

Library

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

FARO (1)

ULB (1)

More...

Resource type

book (4)


Language

English (4)


Year
From To Submit

2013 (3)

1990 (1)

Listing 1 - 4 of 4
Sort by

Book
Traditions and transformations in the history of quantum physics : HQ-3, Third International Conference on the History of Quantum Physics, Berlin, June 28-July 2, 2010
Authors: --- --- ---
Year: 2013 Publisher: Edition Open Access

Loading...
Export citation

Choose an application

Bookmark

Abstract

More than a century after the beginning of the quantum revolution, historians continue to explore new facets in the history of quantum physics, and to re-examine some of its better-known aspects. The thirteen papers collected in this volume, by authors from five continents, present central trends in the current study of quantum physics within its theoretical, experimental, philosophical, technological and social contexts. They discuss developments from the late nineteenth to the early twenty-first century and go beyond the traditional focus on Europe and North America to include China and Japan, and beyond the Heisenbergs and Diracs to reveal the role of actors who hitherto have played only a marginal role in historical account, but left their mark on the development of quantum physics. Also a wider array of subdisciplines comes into view, from optics to quantum gravity through quantum electrodynamics, from atomic and nuclear to condense matter physics and foundations of physics. Moreover, the volume shows that fields such as dispersion, physical chemistry and solid state physics should not be seen merely as areas of applications of ideas that evolved in other contexts, but should be regarded as birthplaces of important theoretical insights. The perspective of the papers ranges from local histories to global discussions, from conceptual changes via the role of experimentation to interactions with social and technological forces and to the interpretation of the theory.


Book
Traditions and transformations in the history of quantum physics : HQ-3, Third International Conference on the History of Quantum Physics, Berlin, June 28-July 2, 2010
Authors: --- --- ---
Year: 2013 Publisher: Edition Open Access

Loading...
Export citation

Choose an application

Bookmark

Abstract

More than a century after the beginning of the quantum revolution, historians continue to explore new facets in the history of quantum physics, and to re-examine some of its better-known aspects. The thirteen papers collected in this volume, by authors from five continents, present central trends in the current study of quantum physics within its theoretical, experimental, philosophical, technological and social contexts. They discuss developments from the late nineteenth to the early twenty-first century and go beyond the traditional focus on Europe and North America to include China and Japan, and beyond the Heisenbergs and Diracs to reveal the role of actors who hitherto have played only a marginal role in historical account, but left their mark on the development of quantum physics. Also a wider array of subdisciplines comes into view, from optics to quantum gravity through quantum electrodynamics, from atomic and nuclear to condense matter physics and foundations of physics. Moreover, the volume shows that fields such as dispersion, physical chemistry and solid state physics should not be seen merely as areas of applications of ideas that evolved in other contexts, but should be regarded as birthplaces of important theoretical insights. The perspective of the papers ranges from local histories to global discussions, from conceptual changes via the role of experimentation to interactions with social and technological forces and to the interpretation of the theory.


Book
Traditions and transformations in the history of quantum physics : HQ-3, Third International Conference on the History of Quantum Physics, Berlin, June 28-July 2, 2010
Authors: --- --- ---
Year: 2013 Publisher: Edition Open Access

Loading...
Export citation

Choose an application

Bookmark

Abstract

More than a century after the beginning of the quantum revolution, historians continue to explore new facets in the history of quantum physics, and to re-examine some of its better-known aspects. The thirteen papers collected in this volume, by authors from five continents, present central trends in the current study of quantum physics within its theoretical, experimental, philosophical, technological and social contexts. They discuss developments from the late nineteenth to the early twenty-first century and go beyond the traditional focus on Europe and North America to include China and Japan, and beyond the Heisenbergs and Diracs to reveal the role of actors who hitherto have played only a marginal role in historical account, but left their mark on the development of quantum physics. Also a wider array of subdisciplines comes into view, from optics to quantum gravity through quantum electrodynamics, from atomic and nuclear to condense matter physics and foundations of physics. Moreover, the volume shows that fields such as dispersion, physical chemistry and solid state physics should not be seen merely as areas of applications of ideas that evolved in other contexts, but should be regarded as birthplaces of important theoretical insights. The perspective of the papers ranges from local histories to global discussions, from conceptual changes via the role of experimentation to interactions with social and technological forces and to the interpretation of the theory.


Book
Maxwell's demon
Authors: ---
ISBN: 1400861527 0691605467 9781400861521 0691087261 069108727X 9780691605463 9780691087269 0691087261 9780691087276 069108727X 0691634432 Year: 1990 Publisher: Princeton, New Jersey

Loading...
Export citation

Choose an application

Bookmark

Abstract

About 120 years ago, James Clerk Maxwell introduced his now legendary hypothetical "demon" as a challenge to the integrity of the second law of thermodynamics. Fascination with the demon persisted throughout the development of statistical and quantum physics, information theory, and computer science--and linkages have been established between Maxwell's demon and each of these disciplines. The demon's seductive quality makes it appealing to physical scientists, engineers, computer scientists, biologists, psychologists, and historians and philosophers of science. Until now its important source material has been scattered throughout diverse journals.This book brings under one cover twenty-five reprints, including seminal works by Maxwell and William Thomson; historical reviews by Martin Klein, Edward Daub, and Peter Heimann; information theoretic contributions by Leo Szilard, Leon Brillouin, Dennis Gabor, and Jerome Rothstein; and innovations by Rolf Landauer and Charles Bennett illustrating linkages with the limits of computation. An introductory chapter summarizes the demon's life, from Maxwell's illustration of the second law's statistical nature to the most recent "exorcism" of the demon based on a need periodically to erase its memory. An annotated chronological bibliography is included.Originally published in 1990.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.

Keywords

Thermodynamics. --- Chemistry, Physical and theoretical --- Dynamics --- Mechanics --- Physics --- Heat --- Heat-engines --- Quantum theory --- Maxwell's demon. --- Adiabatic process. --- Automaton. --- Available energy (particle collision). --- Billiard-ball computer. --- Black hole information paradox. --- Black hole thermodynamics. --- Black-body radiation. --- Boltzmann's entropy formula. --- Boyle's law. --- Calculation. --- Carnot's theorem (thermodynamics). --- Catalysis. --- Chaos theory. --- Computation. --- Copying. --- Creation and annihilation operators. --- Digital physics. --- Dissipation. --- Distribution law. --- Domain wall. --- EPR paradox. --- Energy level. --- Entropy of mixing. --- Entropy. --- Exchange interaction. --- Expectation value (quantum mechanics). --- Extrapolation. --- Fair coin. --- Fermi–Dirac statistics. --- Gibbs free energy. --- Gibbs paradox. --- Guessing. --- Halting problem. --- Hamiltonian mechanics. --- Heat engine. --- Heat. --- Helmholtz free energy. --- Ideal gas. --- Idealization. --- Information theory. --- Instant. --- Internal energy. --- Irreversible process. --- James Prescott Joule. --- Johnson–Nyquist noise. --- Kinetic theory of gases. --- Laws of thermodynamics. --- Least squares. --- Loschmidt's paradox. --- Ludwig Boltzmann. --- Maxwell–Boltzmann distribution. --- Mean free path. --- Measurement. --- Mechanical equivalent of heat. --- Microscopic reversibility. --- Molecule. --- Negative temperature. --- Negentropy. --- Newton's law of universal gravitation. --- Nitrous oxide. --- Non-equilibrium thermodynamics. --- Old quantum theory. --- Particle in a box. --- Perpetual motion. --- Photon. --- Probability. --- Quantity. --- Quantum limit. --- Quantum mechanics. --- Rectangular potential barrier. --- Result. --- Reversible computing. --- Reversible process (thermodynamics). --- Richard Feynman. --- Rolf Landauer. --- Rudolf Clausius. --- Scattering. --- Schrödinger equation. --- Second law of thermodynamics. --- Self-information. --- Spontaneous process. --- Standard state. --- Statistical mechanics. --- Superselection. --- Temperature. --- Theory of heat. --- Theory. --- Thermally isolated system. --- Thermodynamic equilibrium. --- Thermodynamic system. --- Thought experiment. --- Turing machine. --- Ultimate fate of the universe. --- Uncertainty principle. --- Unitarity (physics). --- Van der Waals force. --- Wave function collapse. --- Work output.

Listing 1 - 4 of 4
Sort by