Listing 1 - 9 of 9 |
Sort by
|
Choose an application
Topology --- Obstruction theory --- Product formulas (Operator theory) --- Surgery (Topology) --- Differential topology --- Homotopy equivalences --- Manifolds (Mathematics) --- Formulas, Product --- Operator theory --- Algebraic topology --- Chirurgie (topologie) --- Obstruction theory. --- Obstructions, Théorie des.
Choose an application
Algebraic topology --- H-spaces --- Obstruction theory --- Torsion theory (Algebra) --- Commutative rings --- Ideals (Algebra) --- Modules (Algebra) --- Hopf spaces --- Spaces, Hopf --- Topological groups --- H-spaces. --- Obstruction theory. --- Torsion, Théorie de la (algèbre) --- Obstructions, Théorie des. --- H-espaces.
Choose an application
Algebraic topology --- 515.1 --- Topology --- 515.1 Topology --- Homotopy theory --- Mappings (Mathematics) --- Obstruction theory --- Homotopie --- Applications (Mathématiques) --- Théorie des obstructions --- Topologie algébrique
Choose an application
Algebraic topology --- Dyer-Lashof operations --- H-spaces --- Obstruction theory --- Hopf spaces --- Spaces, Hopf --- Topological groups --- Operations, Dyer-Lashof --- Cohomology operations --- Topological rings --- Anneaux topologiques --- Obstructions, Théorie des --- H-espaces --- Anneaux topologiques. --- Obstructions, Théorie des. --- H-espaces.
Choose an application
Algebraic topology --- Homotopy theory --- Obstruction theory --- Spectral sequences (Mathematics) --- Suites spectrales (mathématiques) --- Obstructions, Théorie des --- Homotopie --- Algebra, Homological --- Sequences (Mathematics) --- Spectral theory (Mathematics) --- Deformations, Continuous --- Topology --- Obstructions, Théorie des. --- Homotopie.
Choose an application
Algebra --- Differential operators. --- Invariants. --- Index theory (Mathematics) --- Obstruction theory. --- Opérateurs différentiels --- Analyse multidimensionnelle --- Index, Théorie de l' (Mathématiques) --- Théorie des obstructions --- 51 <082.1> --- Mathematics--Series --- Opérateurs différentiels --- Index, Théorie de l' (Mathématiques) --- Théorie des obstructions --- Opérateurs différentiels. --- Index, Théorie de l' (mathématiques) --- Obstructions, Théorie des. --- Differential operators --- Invariants --- Obstruction theory --- Algebraic topology --- Mathematics --- Operators, Differential --- Differential equations --- Operator theory
Choose an application
Beginning with a general discussion of bordism, Professors Madsen and Milgram present the homotopy theory of the surgery classifying spaces and the classifying spaces for the various required bundle theories. The next part covers more recent work on the maps between these spaces and the properties of the PL and Top characteristic classes, and includes integrality theorems for topological and PL manifolds. Later chapters treat the integral cohomology of BPL and Btop. The authors conclude with a discussion of the PL and topological cobordism rings and a construction of the torsion-free generators.
Algebraic topology --- 515.16 --- Classifying spaces --- Cobordism theory --- Manifolds (Mathematics) --- Surgery (Topology) --- Differential topology --- Homotopy equivalences --- Topology --- Geometry, Differential --- Spaces, Classifying --- Fiber bundles (Mathematics) --- Fiber spaces (Mathematics) --- Topology of manifolds --- Classifying spaces. --- Cobordism theory. --- Manifolds (Mathematics). --- Surgery (Topology). --- 515.16 Topology of manifolds --- Bijection. --- Calculation. --- Characteristic class. --- Classification theorem. --- Classifying space. --- Closed manifold. --- Cobordism. --- Coefficient. --- Cohomology. --- Commutative diagram. --- Commutative property. --- Complex projective space. --- Connected sum. --- Corollary. --- Cup product. --- Diagram (category theory). --- Differentiable manifold. --- Disjoint union. --- Disk (mathematics). --- Effective method. --- Eilenberg–Moore spectral sequence. --- Elaboration. --- Equivalence class. --- Exact sequence. --- Exterior algebra. --- Fiber bundle. --- Fibration. --- Function composition. --- H-space. --- Homeomorphism. --- Homomorphism. --- Homotopy fiber. --- Homotopy group. --- Homotopy. --- Hopf algebra. --- Iterative method. --- Loop space. --- Manifold. --- Massey product. --- N-sphere. --- Normal bundle. --- Obstruction theory. --- Pairing. --- Permutation. --- Piecewise linear manifold. --- Piecewise linear. --- Polynomial. --- Prime number. --- Projective space. --- Sequence. --- Simply connected space. --- Special case. --- Spin structure. --- Steenrod algebra. --- Subset. --- Summation. --- Tensor product. --- Theorem. --- Topological group. --- Topological manifold. --- Topology. --- Total order. --- Variétés topologiques --- Topologie differentielle
Choose an application
The intention of the authors is to examine the relationship between piecewise linear structure and differential structure: a relationship, they assert, that can be understood as a homotopy obstruction theory, and, hence, can be studied by using the traditional techniques of algebraic topology.Thus the book attacks the problem of existence and classification (up to isotopy) of differential structures compatible with a given combinatorial structure on a manifold. The problem is completely "solved" in the sense that it is reduced to standard problems of algebraic topology.The first part of the book is purely geometrical; it proves that every smoothing of the product of a manifold M and an interval is derived from an essentially unique smoothing of M. In the second part this result is used to translate the classification of smoothings into the problem of putting a linear structure on the tangent microbundle of M. This in turn is converted to the homotopy problem of classifying maps from M into a certain space PL/O. The set of equivalence classes of smoothings on M is given a natural abelian group structure.
Algebraic topology --- Piecewise linear topology --- Manifolds (Mathematics) --- Topologie linéaire par morceaux --- Variétés (Mathématiques) --- 515.16 --- PL topology --- Topology --- Geometry, Differential --- Topology of manifolds --- Piecewise linear topology. --- Manifolds (Mathematics). --- 515.16 Topology of manifolds --- Topologie linéaire par morceaux --- Variétés (Mathématiques) --- Affine transformation. --- Approximation. --- Associative property. --- Bijection. --- Bundle map. --- Classification theorem. --- Codimension. --- Coefficient. --- Cohomology. --- Commutative property. --- Computation. --- Convex cone. --- Convolution. --- Corollary. --- Counterexample. --- Diffeomorphism. --- Differentiable function. --- Differentiable manifold. --- Differential structure. --- Dimension. --- Direct proof. --- Division by zero. --- Embedding. --- Empty set. --- Equivalence class. --- Equivalence relation. --- Euclidean space. --- Existential quantification. --- Exponential map (Lie theory). --- Fiber bundle. --- Fibration. --- Functor. --- Grassmannian. --- H-space. --- Homeomorphism. --- Homotopy. --- Integral curve. --- Inverse problem. --- Isomorphism class. --- K0. --- Linearization. --- Manifold. --- Mathematical induction. --- Milnor conjecture. --- Natural transformation. --- Neighbourhood (mathematics). --- Normal bundle. --- Obstruction theory. --- Open set. --- Partition of unity. --- Piecewise linear. --- Polyhedron. --- Reflexive relation. --- Regular map (graph theory). --- Sheaf (mathematics). --- Smoothing. --- Smoothness. --- Special case. --- Submanifold. --- Tangent bundle. --- Tangent vector. --- Theorem. --- Topological manifold. --- Topological space. --- Topology. --- Transition function. --- Transitive relation. --- Vector bundle. --- Vector field. --- Variétés topologiques
Choose an application
On Knots is a journey through the theory of knots, starting from the simplest combinatorial ideas--ideas arising from the representation of weaving patterns. From this beginning, topological invariants are constructed directly: first linking numbers, then the Conway polynomial and skein theory. This paves the way for later discussion of the recently discovered Jones and generalized polynomials. The central chapter, Chapter Six, is a miscellany of topics and recreations. Here the reader will find the quaternions and the belt trick, a devilish rope trick, Alhambra mosaics, Fibonacci trees, the topology of DNA, and the author's geometric interpretation of the generalized Jones Polynomial.Then come branched covering spaces, the Alexander polynomial, signature theorems, the work of Casson and Gordon on slice knots, and a chapter on knots and algebraic singularities.The book concludes with an appendix about generalized polynomials.
Knot theory --- Knots (Topology) --- Low-dimensional topology --- Knot theory. --- Algebraic topology --- 3-sphere. --- Addition theorem. --- Addition. --- Alexander polynomial. --- Algebraic variety. --- Algorithm. --- Ambient isotopy. --- Arf invariant. --- Basepoint. --- Bijection. --- Bilinear form. --- Borromean rings. --- Bracket polynomial. --- Braid group. --- Branched covering. --- Chiral knot. --- Chromatic polynomial. --- Cobordism. --- Codimension. --- Combination. --- Combinatorics. --- Complex analysis. --- Concentric. --- Conjecture. --- Connected sum. --- Conway polynomial (finite fields). --- Counting. --- Covering space. --- Cyclic group. --- Dense set. --- Determinant. --- Diagram (category theory). --- Diffeomorphism. --- Dimension. --- Disjoint union. --- Disk (mathematics). --- Dual graph. --- Elementary algebra. --- Embedding. --- Enumeration. --- Existential quantification. --- Exotic sphere. --- Fibration. --- Formal power series. --- Fundamental group. --- Geometric topology. --- Geometry and topology. --- Geometry. --- Group action. --- Homotopy. --- Integer. --- Intersection form (4-manifold). --- Isolated singularity. --- Jones polynomial. --- Knot complement. --- Knot group. --- Laws of Form. --- Lens space. --- Linking number. --- Manifold. --- Module (mathematics). --- Morwen Thistlethwaite. --- Normal bundle. --- Notation. --- Obstruction theory. --- Operator algebra. --- Pairing. --- Parity (mathematics). --- Partition function (mathematics). --- Planar graph. --- Point at infinity. --- Polynomial ring. --- Polynomial. --- Quantity. --- Rectangle. --- Reidemeister move. --- Remainder. --- Root of unity. --- Saddle point. --- Seifert surface. --- Singularity theory. --- Slice knot. --- Special case. --- Statistical mechanics. --- Substructure. --- Summation. --- Symmetry. --- Theorem. --- Three-dimensional space (mathematics). --- Topological space. --- Torus knot. --- Trefoil knot. --- Tubular neighborhood. --- Underpinning. --- Unknot. --- Variable (mathematics). --- Whitehead link. --- Wild knot. --- Writhe. --- Variétés topologiques --- Topologie combinatoire --- Theorie des noeuds
Listing 1 - 9 of 9 |
Sort by
|