Listing 1 - 10 of 44 | << page >> |
Sort by
|
Choose an application
Choose an application
Nonlinear wave equations --- Congresses. --- Nonlinear wave equations - Congresses.
Choose an application
Choose an application
Nonlinear wave equations --- Differential equations, Partial
Choose an application
Choose an application
Nonlinear waves are pervasive in nature, but are often elusive when they are modelled and analysed. This book develops a natural approach to the problem based on phase modulation. It is both an elaboration of the use of phase modulation for the study of nonlinear waves and a compendium of background results in mathematics, such as Hamiltonian systems, symplectic geometry, conservation laws, Noether theory, Lagrangian field theory and analysis, all of which combine to generate the new theory of phase modulation. While the build-up of theory can be intensive, the resulting emergent partial differential equations are relatively simple. A key outcome of the theory is that the coefficients in the emergent modulation equations are universal and easy to calculate. This book gives several examples of the implications in the theory of fluid mechanics and points to a wide range of new applications.
Nonlinear wave equations. --- Nonlinear waves. --- Phase modulation.
Choose an application
Nonlinear wave equations --- Differential equations, Partial
Choose an application
Schrödinger equation --- Nonlinear wave equations --- Nonlinear systems
Choose an application
This book brings together several contributions from leading experts in the field of nonlinear wave propagation. This field, which during the last three decades has seen important breakthroughs from the theoretical point of view, has recently acquired increased relevance due to advances in the technology of fluids e.g. at microscale or nanoscale and the recognition of crucial applications to the understanding of biological phenomena. Nonlinear wave theory requires the use of disparate approaches, including formal and rigorous asymptotic methods, Lie group theory, energy methods, numerical anal
Nonlinear wave equations --- Differential equations, Partial --- Asymptotic theory
Choose an application
The Boussinesq equation is the first model of surface waves in shallow water that considers the nonlinearity and the dispersion and their interaction as a reason for wave stability known as the Boussinesq paradigm. This balance bears solitary waves that behave like quasi-particles. At present, there are some Boussinesq-like equations. The prevalent part of the known analytical and numerical solutions, however, relates to the 1d case while for multidimensional cases, almost nothing is known so far. An exclusion is the solutions of the Kadomtsev-Petviashvili equation. The difficulties originate from the lack of known analytic initial conditions and the nonintegrability in the multidimensional case. Another problem is which kind of nonlinearity will keep the temporal stability of localized solutions.
Listing 1 - 10 of 44 | << page >> |
Sort by
|