Listing 1 - 6 of 6 |
Sort by
|
Choose an application
This Special Issue (SI) on “Land Degradation Assessment with Earth Observation” comprises 17 original research papers with a focus on land degradation in arid, semiarid and dry-subhumid areas (i.e., desertification) in addition to temperate rangelands, grasslands, woodlands and the humid tropics. The studies cover different spatial, spectral and temporal scales and employ a wealth of different optical and radar sensors. Some studies incorporate time-series analysis techniques that assess the general trend of vegetation or the timing and duration of the reduction in biological productivity caused by land degradation. As anticipated from the latest trend in Earth Observation (EO) literature, some studies utilize the cloud-computing infrastructure of Google Earth Engine to cope with the unprecedented volume of data involved in current methodological approaches. This SI clearly demonstrates the ever-increasing relevance of EO technologies when it comes to assessing and monitoring land degradation. With the recently published IPCC Reports informing us of the severe impacts and risks to terrestrial and freshwater ecosystems and the ecosystem services they provide, the EO scientific community has a clear obligation to increase its efforts to address any remaining gaps—some of which have been identified in this SI—and produce highly accurate and relevant land-degradation assessment and monitoring tools.
Research & information: general --- bfast --- Mann–Kendall --- Sen’s slope --- East Africa --- NDVI --- breakpoint analysis --- vegetation trends --- greening --- browning --- Kenya --- Uganda --- trend analysis --- land use --- land cover --- spatial heterogeneity --- mining development --- geographically weighted regression (GWR) --- Mann-Kendall --- arid and semi-arid areas --- salinization --- irrigated systems --- Niger River basin --- salinity index --- vegetation index --- TI-NDVI --- Sentinel-2 images --- high temporal resolution --- wind erosion modeling --- RWEQ --- GEE --- central Asia --- spatial-temporal variation --- land degradation --- archetypes --- self-organizing maps --- drivers --- savannah --- Nigeria --- reference levels --- REDD+ --- greenhouse gas emissions --- Xishuangbanna --- monitoring and reporting --- Normalised Difference Vegetation Index (NDVI) --- Vegetation Condition Index (VCI) --- drought --- land use-land cover --- remote sensing --- Botswana --- developing countries --- Google Earth Engine --- Landsat time series analysis --- semi-arid areas --- sustainable land management programmes --- precipitation --- breakpoints and timeseries analysis --- ecosystem structural change --- BFAST --- land degradation neutrality --- SDG --- land productivity --- Landsat --- vegetation-precipitation relationship --- soil organic carbon --- Kobresia pygmaea community --- unmanned aerial vehicle --- Gaofen satellite --- spatial distribution --- aridity index --- satellite-based aridity index --- remote sensing index --- salinized land degradation index (SDI) --- Amu Darya delta (ADD) --- satellite imagery --- gully mapping --- machine learning --- random forest --- support vector machines --- South Africa --- semi-arid environment --- shrub encroachment --- slangbos --- Earth observation --- time series --- Sentinel-1 --- Sentinel-2 --- Synthetic Aperture Radar (SAR) --- Soil Adjusted Vegetation Index (SAVI) --- Kyrgyzstan --- pastures --- MODIS --- land surface phenology --- drought impacts --- drought adaptation --- drought index --- vegetation resilience --- drought vulnerability --- standardized precipitation evapotranspiration index --- AVHRR --- n/a --- Sen's slope
Choose an application
Many people live in rural areas in tropical regions. Rural development is not merely a contribution to the growth of individual countries. It can be a way to reduce poverty and to increase access to water, health care, and education. Sustainable rural development can also help stop deforestation and reduce livestock, which generate most of the greenhouse gas emissions. However, efforts to achieve a sustainable rural development are often thwarted by floods, drought, heat waves, and hurricanes, which local communities are not very prepared to tackle. Agricultural practices and local planning are still not very risk-informed. These deficiencies are particularly acute in tropical regions, where many Least Developed Countries are located and where there is, however, great potential for rural development. This Special Issue contains 22 studies on best practices for risk awareness; on local risk reduction; on several cases of soil depletion, water pollution, and sustainable access to safe water; and on agronomy, earth sciences, ecology, economy, environmental engineering, geomatics, materials science, and spatial and regional planning in 12 tropical countries.
Research & information: general --- climate change --- contingency plan --- flood risk --- local development plan --- risk management --- sustainable rural development --- agricultural drought --- heavy rains --- hydrological drought --- meteorological drought --- risk assessment --- Sahel --- early warning --- hydrology --- local communities --- Niger river basin --- rural development --- disaster risk reduction --- official development assistance --- public participation --- risk tracking --- Sendai framework --- sustainable development --- dataset validation --- precipitation --- Kenya --- local climate --- ASALs --- Quantile Mapping --- climate services --- local drought risk reduction --- smallholder farmers --- agrometeorological forecast --- Niger --- natural resources --- Mauritania --- resource management --- regional planning --- participatory approach --- EO data --- water resources --- sustainable management --- local development --- water for food security --- building consolidation --- extreme precipitations --- flood exposure --- satellite remote sensing --- settlement dynamics --- vulnerability --- agriculture --- Nitrate runoff --- real-time monitoring --- water quality --- rural area --- scant data --- nitrate contamination --- water --- flood --- Sinai Peninsula --- flash flood --- CORDEX --- water harvesting --- indigenous farmers --- multinational corporations --- systems thinking --- Nigeria --- sub-Saharan Africa --- drought --- rainfall regime --- soil biogeochemistry --- natural disasters --- flooding --- flood vulnerability --- inequality --- risk premium --- expected annual damages --- certainty equivalent annual damages --- equity weight expected annual damages --- equity weight certainty equivalent annual damage --- soil erosion --- Great Rift Valley Lakes --- ASAL --- desertification --- groundwater resources --- fluoride --- main Ethiopian Rift Valley --- developing countries --- welfare --- panel probit model --- adoption --- propensity score matching --- water crisis in Africa --- water collection and retention systems --- sand dam --- migration --- risk communication --- volcanic hazards --- social risk perception --- resilience --- demonstrator --- scenario --- multi-risk analysis --- climate-smart agriculture --- socio-ecological systems --- extension --- Belize --- milpa --- food security --- sustainability --- photovoltaic energy --- desalination system --- SIDS --- CO2 emissions --- LCOW --- LEOW --- n/a
Choose an application
Many people live in rural areas in tropical regions. Rural development is not merely a contribution to the growth of individual countries. It can be a way to reduce poverty and to increase access to water, health care, and education. Sustainable rural development can also help stop deforestation and reduce livestock, which generate most of the greenhouse gas emissions. However, efforts to achieve a sustainable rural development are often thwarted by floods, drought, heat waves, and hurricanes, which local communities are not very prepared to tackle. Agricultural practices and local planning are still not very risk-informed. These deficiencies are particularly acute in tropical regions, where many Least Developed Countries are located and where there is, however, great potential for rural development. This Special Issue contains 22 studies on best practices for risk awareness; on local risk reduction; on several cases of soil depletion, water pollution, and sustainable access to safe water; and on agronomy, earth sciences, ecology, economy, environmental engineering, geomatics, materials science, and spatial and regional planning in 12 tropical countries.
climate change --- contingency plan --- flood risk --- local development plan --- risk management --- sustainable rural development --- agricultural drought --- heavy rains --- hydrological drought --- meteorological drought --- risk assessment --- Sahel --- early warning --- hydrology --- local communities --- Niger river basin --- rural development --- disaster risk reduction --- official development assistance --- public participation --- risk tracking --- Sendai framework --- sustainable development --- dataset validation --- precipitation --- Kenya --- local climate --- ASALs --- Quantile Mapping --- climate services --- local drought risk reduction --- smallholder farmers --- agrometeorological forecast --- Niger --- natural resources --- Mauritania --- resource management --- regional planning --- participatory approach --- EO data --- water resources --- sustainable management --- local development --- water for food security --- building consolidation --- extreme precipitations --- flood exposure --- satellite remote sensing --- settlement dynamics --- vulnerability --- agriculture --- Nitrate runoff --- real-time monitoring --- water quality --- rural area --- scant data --- nitrate contamination --- water --- flood --- Sinai Peninsula --- flash flood --- CORDEX --- water harvesting --- indigenous farmers --- multinational corporations --- systems thinking --- Nigeria --- sub-Saharan Africa --- drought --- rainfall regime --- soil biogeochemistry --- natural disasters --- flooding --- flood vulnerability --- inequality --- risk premium --- expected annual damages --- certainty equivalent annual damages --- equity weight expected annual damages --- equity weight certainty equivalent annual damage --- soil erosion --- Great Rift Valley Lakes --- ASAL --- desertification --- groundwater resources --- fluoride --- main Ethiopian Rift Valley --- developing countries --- welfare --- panel probit model --- adoption --- propensity score matching --- water crisis in Africa --- water collection and retention systems --- sand dam --- migration --- risk communication --- volcanic hazards --- social risk perception --- resilience --- demonstrator --- scenario --- multi-risk analysis --- climate-smart agriculture --- socio-ecological systems --- extension --- Belize --- milpa --- food security --- sustainability --- photovoltaic energy --- desalination system --- SIDS --- CO2 emissions --- LCOW --- LEOW --- n/a
Choose an application
This Special Issue (SI) on “Land Degradation Assessment with Earth Observation” comprises 17 original research papers with a focus on land degradation in arid, semiarid and dry-subhumid areas (i.e., desertification) in addition to temperate rangelands, grasslands, woodlands and the humid tropics. The studies cover different spatial, spectral and temporal scales and employ a wealth of different optical and radar sensors. Some studies incorporate time-series analysis techniques that assess the general trend of vegetation or the timing and duration of the reduction in biological productivity caused by land degradation. As anticipated from the latest trend in Earth Observation (EO) literature, some studies utilize the cloud-computing infrastructure of Google Earth Engine to cope with the unprecedented volume of data involved in current methodological approaches. This SI clearly demonstrates the ever-increasing relevance of EO technologies when it comes to assessing and monitoring land degradation. With the recently published IPCC Reports informing us of the severe impacts and risks to terrestrial and freshwater ecosystems and the ecosystem services they provide, the EO scientific community has a clear obligation to increase its efforts to address any remaining gaps—some of which have been identified in this SI—and produce highly accurate and relevant land-degradation assessment and monitoring tools.
bfast --- Mann–Kendall --- Sen’s slope --- East Africa --- NDVI --- breakpoint analysis --- vegetation trends --- greening --- browning --- Kenya --- Uganda --- trend analysis --- land use --- land cover --- spatial heterogeneity --- mining development --- geographically weighted regression (GWR) --- Mann-Kendall --- arid and semi-arid areas --- salinization --- irrigated systems --- Niger River basin --- salinity index --- vegetation index --- TI-NDVI --- Sentinel-2 images --- high temporal resolution --- wind erosion modeling --- RWEQ --- GEE --- central Asia --- spatial-temporal variation --- land degradation --- archetypes --- self-organizing maps --- drivers --- savannah --- Nigeria --- reference levels --- REDD+ --- greenhouse gas emissions --- Xishuangbanna --- monitoring and reporting --- Normalised Difference Vegetation Index (NDVI) --- Vegetation Condition Index (VCI) --- drought --- land use-land cover --- remote sensing --- Botswana --- developing countries --- Google Earth Engine --- Landsat time series analysis --- semi-arid areas --- sustainable land management programmes --- precipitation --- breakpoints and timeseries analysis --- ecosystem structural change --- BFAST --- land degradation neutrality --- SDG --- land productivity --- Landsat --- vegetation-precipitation relationship --- soil organic carbon --- Kobresia pygmaea community --- unmanned aerial vehicle --- Gaofen satellite --- spatial distribution --- aridity index --- satellite-based aridity index --- remote sensing index --- salinized land degradation index (SDI) --- Amu Darya delta (ADD) --- satellite imagery --- gully mapping --- machine learning --- random forest --- support vector machines --- South Africa --- semi-arid environment --- shrub encroachment --- slangbos --- Earth observation --- time series --- Sentinel-1 --- Sentinel-2 --- Synthetic Aperture Radar (SAR) --- Soil Adjusted Vegetation Index (SAVI) --- Kyrgyzstan --- pastures --- MODIS --- land surface phenology --- drought impacts --- drought adaptation --- drought index --- vegetation resilience --- drought vulnerability --- standardized precipitation evapotranspiration index --- AVHRR --- n/a --- Sen's slope
Choose an application
This Special Issue (SI) on “Land Degradation Assessment with Earth Observation” comprises 17 original research papers with a focus on land degradation in arid, semiarid and dry-subhumid areas (i.e., desertification) in addition to temperate rangelands, grasslands, woodlands and the humid tropics. The studies cover different spatial, spectral and temporal scales and employ a wealth of different optical and radar sensors. Some studies incorporate time-series analysis techniques that assess the general trend of vegetation or the timing and duration of the reduction in biological productivity caused by land degradation. As anticipated from the latest trend in Earth Observation (EO) literature, some studies utilize the cloud-computing infrastructure of Google Earth Engine to cope with the unprecedented volume of data involved in current methodological approaches. This SI clearly demonstrates the ever-increasing relevance of EO technologies when it comes to assessing and monitoring land degradation. With the recently published IPCC Reports informing us of the severe impacts and risks to terrestrial and freshwater ecosystems and the ecosystem services they provide, the EO scientific community has a clear obligation to increase its efforts to address any remaining gaps—some of which have been identified in this SI—and produce highly accurate and relevant land-degradation assessment and monitoring tools.
Research & information: general --- bfast --- Mann-Kendall --- Sen's slope --- East Africa --- NDVI --- breakpoint analysis --- vegetation trends --- greening --- browning --- Kenya --- Uganda --- trend analysis --- land use --- land cover --- spatial heterogeneity --- mining development --- geographically weighted regression (GWR) --- arid and semi-arid areas --- salinization --- irrigated systems --- Niger River basin --- salinity index --- vegetation index --- TI-NDVI --- Sentinel-2 images --- high temporal resolution --- wind erosion modeling --- RWEQ --- GEE --- central Asia --- spatial-temporal variation --- land degradation --- archetypes --- self-organizing maps --- drivers --- savannah --- Nigeria --- reference levels --- REDD+ --- greenhouse gas emissions --- Xishuangbanna --- monitoring and reporting --- Normalised Difference Vegetation Index (NDVI) --- Vegetation Condition Index (VCI) --- drought --- land use-land cover --- remote sensing --- Botswana --- developing countries --- Google Earth Engine --- Landsat time series analysis --- semi-arid areas --- sustainable land management programmes --- precipitation --- breakpoints and timeseries analysis --- ecosystem structural change --- BFAST --- land degradation neutrality --- SDG --- land productivity --- Landsat --- vegetation-precipitation relationship --- soil organic carbon --- Kobresia pygmaea community --- unmanned aerial vehicle --- Gaofen satellite --- spatial distribution --- aridity index --- satellite-based aridity index --- remote sensing index --- salinized land degradation index (SDI) --- Amu Darya delta (ADD) --- satellite imagery --- gully mapping --- machine learning --- random forest --- support vector machines --- South Africa --- semi-arid environment --- shrub encroachment --- slangbos --- Earth observation --- time series --- Sentinel-1 --- Sentinel-2 --- Synthetic Aperture Radar (SAR) --- Soil Adjusted Vegetation Index (SAVI) --- Kyrgyzstan --- pastures --- MODIS --- land surface phenology --- drought impacts --- drought adaptation --- drought index --- vegetation resilience --- drought vulnerability --- standardized precipitation evapotranspiration index --- AVHRR
Choose an application
Many people live in rural areas in tropical regions. Rural development is not merely a contribution to the growth of individual countries. It can be a way to reduce poverty and to increase access to water, health care, and education. Sustainable rural development can also help stop deforestation and reduce livestock, which generate most of the greenhouse gas emissions. However, efforts to achieve a sustainable rural development are often thwarted by floods, drought, heat waves, and hurricanes, which local communities are not very prepared to tackle. Agricultural practices and local planning are still not very risk-informed. These deficiencies are particularly acute in tropical regions, where many Least Developed Countries are located and where there is, however, great potential for rural development. This Special Issue contains 22 studies on best practices for risk awareness; on local risk reduction; on several cases of soil depletion, water pollution, and sustainable access to safe water; and on agronomy, earth sciences, ecology, economy, environmental engineering, geomatics, materials science, and spatial and regional planning in 12 tropical countries.
Research & information: general --- climate change --- contingency plan --- flood risk --- local development plan --- risk management --- sustainable rural development --- agricultural drought --- heavy rains --- hydrological drought --- meteorological drought --- risk assessment --- Sahel --- early warning --- hydrology --- local communities --- Niger river basin --- rural development --- disaster risk reduction --- official development assistance --- public participation --- risk tracking --- Sendai framework --- sustainable development --- dataset validation --- precipitation --- Kenya --- local climate --- ASALs --- Quantile Mapping --- climate services --- local drought risk reduction --- smallholder farmers --- agrometeorological forecast --- Niger --- natural resources --- Mauritania --- resource management --- regional planning --- participatory approach --- EO data --- water resources --- sustainable management --- local development --- water for food security --- building consolidation --- extreme precipitations --- flood exposure --- satellite remote sensing --- settlement dynamics --- vulnerability --- agriculture --- Nitrate runoff --- real-time monitoring --- water quality --- rural area --- scant data --- nitrate contamination --- water --- flood --- Sinai Peninsula --- flash flood --- CORDEX --- water harvesting --- indigenous farmers --- multinational corporations --- systems thinking --- Nigeria --- sub-Saharan Africa --- drought --- rainfall regime --- soil biogeochemistry --- natural disasters --- flooding --- flood vulnerability --- inequality --- risk premium --- expected annual damages --- certainty equivalent annual damages --- equity weight expected annual damages --- equity weight certainty equivalent annual damage --- soil erosion --- Great Rift Valley Lakes --- ASAL --- desertification --- groundwater resources --- fluoride --- main Ethiopian Rift Valley --- developing countries --- welfare --- panel probit model --- adoption --- propensity score matching --- water crisis in Africa --- water collection and retention systems --- sand dam --- migration --- risk communication --- volcanic hazards --- social risk perception --- resilience --- demonstrator --- scenario --- multi-risk analysis --- climate-smart agriculture --- socio-ecological systems --- extension --- Belize --- milpa --- food security --- sustainability --- photovoltaic energy --- desalination system --- SIDS --- CO2 emissions --- LCOW --- LEOW
Listing 1 - 6 of 6 |
Sort by
|