Narrow your search

Library

FARO (5)

KU Leuven (5)

LUCA School of Arts (5)

Odisee (5)

Thomas More Kempen (5)

Thomas More Mechelen (5)

UCLL (5)

ULiège (5)

VIVES (5)

Vlaams Parlement (5)

More...

Resource type

book (9)


Language

English (7)

German (2)


Year
From To Submit

2022 (6)

2019 (1)

2013 (1)

2012 (1)

Listing 1 - 9 of 9
Sort by

Book
Integrierte Lagesensorik für ein adaptives mikrooptisches Ablenksystem
Author:
ISBN: 1000027008 3866448295 Year: 2012 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

In einem mikrooptischen Ablenksystem sollen die sensorischen Eigenschaften der ferromagnetischen Formgedächtnislegierung Ni-Mn-Ga untersucht werden. Dabei kommt ein elektro-thermisch aktivierbarer, durch einen Permanentmagneten vorausgelenkter Dünnfilm-Biegeaktor zur Strahlablenkung zum Einsatz. Die Untersuchung der Eignung des magnetoresistiven Materials zur Positionsermittlung ist Ziel dieser Arbeit. Zur vergleichenden Bewertung werden kapazitive und resistive Referenzsensoren herangezogen.


Book
Entwicklung miniaturisierter Aktorsysteme basierend auf magnetischen Formgedächtnislegierungen
Author:
ISBN: 1000053101 3731505002 Year: 2019 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

In this work, the actuation principles of single-crystal Ni-Mn-Ga alloys based on the magnetic shape memory effect (MSM-effect) and the coupling between their magnetic, mechanical and thermal properties, are investigated. The MSM effect is generated by the magnetically induced reorientation of the crystal structure. Thereby, the magnetic strain up to 10 % can be reached.


Book
Development of Microactuators Based on the Magnetic Shape Memory Effect
Author:
ISBN: 1000036883 3731501252 Year: 2013 Publisher: KIT Scientific Publishing

Loading...
Export citation

Choose an application

Bookmark

Abstract

The giant magneto-strain effect in Ni-Mn-Ga alloys is particularly attractive for actuator applications. Two different approaches are being pursued to develop MSM microactuators. To observe large deflections of Ni-Mn-Ga microactuators, the material should be exhibiting low twinning stress and large magnetic anisotropy. In addition, design rules and boundary conditions for operating the Ni-Mn-Ga actuator material are having significant importance for evolution of performance characteristics.


Book
Magnetic Nanomaterials
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The constant search for innovative magnetic materials increasingly leads to the creation of highly engineered systems built in different forms (films, wires, particles), structured on the nanoscale in at least one spatial direction, and often characterized by the coexistence of two or more phases that are magnetically and/or structurally different. In magnetic systems, the nanometric structural characteristics of the constituent elements, together with the type and strength of the magnetic interactions between them, determine the overall magnetic behavior and can lead to the appearance of unexpected and amazing magnetic phenomena. Indeed, the study of the magnetic properties of nanomaterials continues to arouse great interest for their intriguing fundamental properties and prospective technological applications. This Special Issue contributes to broadening the knowledge on magnetic nanomaterials, demonstrating the breadth and richness of this research field as well as the growing need to address it through an interdisciplinary approach. The papers collected in this book (two reviews and eight regular articles) report cutting-edge studies on the production and characterization of a variety of novel magnetic nanomaterials (nanoparticles, nanocomposites, thin films and multilayers), which have the potential to play a key role in different technologically advanced sectors, such as biotechnology, nanomedicine, energy, spintronics, data storage, and sensors.

Keywords

Technology: general issues --- History of engineering & technology --- disordered magnetism --- super-spin glass --- glassy correlation length --- magnetic freezing --- nanogranular Au/Fe-oxide --- Fe-oxide nanocrystallites --- synthetic antiferromagnet --- exchange bias --- interlayer exchange coupling --- vibrating sample magnetometry --- CoFeB --- thermally assisted magnetic scanning probe lithography --- magnetron sputtering --- nanoparticles --- sol-gel --- Raman spectroscopy --- UV-blue photoluminescence --- ZnNiO --- Kubelka-Munk function --- Burstein-Moss shift --- substitutional doping --- FePd alloy --- electrodeposition technique --- magnetic properties --- structural characterisation --- ferrimagnetic materials --- superparamagnetism --- magnetic hysteresis --- magnetic materials --- magnetic nanoparticles --- nanocomposites --- nanowires --- martensitic transition --- Heusler alloys --- magnetic shape memory alloys --- twin boundary --- epitaxial Ni-Mn-Ga films --- transmission electron microscopy --- magnetic anisotropy --- iron nitrides --- III-nitrides --- nanocrystals --- density functional theory --- magnetic hyperthermia --- magneto-sonoporation --- stem cells --- superparamagnetic iron oxide particles --- cell labelling --- ultrasounds --- osteogenesis --- bone tissue engineering --- magnetic aggregates --- magnetic interactions --- core/shell nanoparticles --- multicore nanoparticles --- hybrid systems --- mixed nanoparticle systems --- chemical synthesis --- magnetic heating


Book
Magnetic Nanomaterials
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The constant search for innovative magnetic materials increasingly leads to the creation of highly engineered systems built in different forms (films, wires, particles), structured on the nanoscale in at least one spatial direction, and often characterized by the coexistence of two or more phases that are magnetically and/or structurally different. In magnetic systems, the nanometric structural characteristics of the constituent elements, together with the type and strength of the magnetic interactions between them, determine the overall magnetic behavior and can lead to the appearance of unexpected and amazing magnetic phenomena. Indeed, the study of the magnetic properties of nanomaterials continues to arouse great interest for their intriguing fundamental properties and prospective technological applications. This Special Issue contributes to broadening the knowledge on magnetic nanomaterials, demonstrating the breadth and richness of this research field as well as the growing need to address it through an interdisciplinary approach. The papers collected in this book (two reviews and eight regular articles) report cutting-edge studies on the production and characterization of a variety of novel magnetic nanomaterials (nanoparticles, nanocomposites, thin films and multilayers), which have the potential to play a key role in different technologically advanced sectors, such as biotechnology, nanomedicine, energy, spintronics, data storage, and sensors.


Book
Smart Materials and Devices for Energy Harvesting
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is devoted to energy harvesting from smart materials and devices. It focusses on the latest available techniques recently published by researchers all over the world. Energy Harvesting allows otherwise wasted environmental energy to be converted into electric energy, such as vibrations, wind and solar energy. It is a common experience that the limiting factor for wearable electronics, such as smartphones or wearable bands, or for wireless sensors in harsh environments, is the finite energy stored in onboard batteries. Therefore, the answer to the battery “charge or change” issue is energy harvesting because it converts the energy in the precise location where it is needed. In order to achieve this, suitable smart materials are needed, such as piezoelectrics or magnetostrictives. Moreover, energy harvesting may also be exploited for other crucial applications, such as for the powering of implantable medical/sensing devices for humans and animals. Therefore, energy harvesting from smart materials will become increasingly important in the future. This book provides a broad perspective on this topic for researchers and readers with both physics and engineering backgrounds.

Keywords

Technology: general issues --- History of engineering & technology --- magnetostrictive --- energy harvesting --- wearable --- magnetostrictive materials --- Galfenol --- finite element model --- iron-gallium --- measurements --- preisach model --- piezoelectric ceramics --- lead-free piezoceramics --- virtual instrument --- 3D electrospinning --- PVDF fibers --- piezoelectricity --- piezoelectric sensing --- wind energy harvesting --- snap-through motion --- dynamic stability --- variable-speed --- double-clamped --- width shapes --- piezoelectric energy harvester --- electrodes pair --- MEMS structure --- finite element method --- open circuit voltage --- moving load --- layered double hydroxide solar cell (LDHSC) --- photoactive material --- UV-Vis absorption --- dye sensitized solar cell (DSSC) --- photoactive layered double hydroxide (LDH) --- transition metal modification --- optical bandgap analysis --- renewable energy --- photovoltaic device design --- iron (Fe) modified MgFeAl LDH --- triboelectric effect --- polymer and composites --- low-power devices --- thermomagnetic energy generators --- power generation --- waste heat recovery --- lumped-element modelling --- magnetic shape memory films --- Ni-Mn-Ga film --- magnetization change --- Curie temperature --- finite element simulation --- piezoelectric unit distributions --- electrical potential and energy --- von Mises stress --- PVDF --- piezoelectric material --- human body movements --- glass fiber-reinforced polymer composite --- multifunctional structural laminate --- thermal energy harvesting --- through-thickness thermal gradient --- thermoelectric generator (TEG) --- magnetostrictive --- energy harvesting --- wearable --- magnetostrictive materials --- Galfenol --- finite element model --- iron-gallium --- measurements --- preisach model --- piezoelectric ceramics --- lead-free piezoceramics --- virtual instrument --- 3D electrospinning --- PVDF fibers --- piezoelectricity --- piezoelectric sensing --- wind energy harvesting --- snap-through motion --- dynamic stability --- variable-speed --- double-clamped --- width shapes --- piezoelectric energy harvester --- electrodes pair --- MEMS structure --- finite element method --- open circuit voltage --- moving load --- layered double hydroxide solar cell (LDHSC) --- photoactive material --- UV-Vis absorption --- dye sensitized solar cell (DSSC) --- photoactive layered double hydroxide (LDH) --- transition metal modification --- optical bandgap analysis --- renewable energy --- photovoltaic device design --- iron (Fe) modified MgFeAl LDH --- triboelectric effect --- polymer and composites --- low-power devices --- thermomagnetic energy generators --- power generation --- waste heat recovery --- lumped-element modelling --- magnetic shape memory films --- Ni-Mn-Ga film --- magnetization change --- Curie temperature --- finite element simulation --- piezoelectric unit distributions --- electrical potential and energy --- von Mises stress --- PVDF --- piezoelectric material --- human body movements --- glass fiber-reinforced polymer composite --- multifunctional structural laminate --- thermal energy harvesting --- through-thickness thermal gradient --- thermoelectric generator (TEG)


Book
Magnetic Nanomaterials
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The constant search for innovative magnetic materials increasingly leads to the creation of highly engineered systems built in different forms (films, wires, particles), structured on the nanoscale in at least one spatial direction, and often characterized by the coexistence of two or more phases that are magnetically and/or structurally different. In magnetic systems, the nanometric structural characteristics of the constituent elements, together with the type and strength of the magnetic interactions between them, determine the overall magnetic behavior and can lead to the appearance of unexpected and amazing magnetic phenomena. Indeed, the study of the magnetic properties of nanomaterials continues to arouse great interest for their intriguing fundamental properties and prospective technological applications. This Special Issue contributes to broadening the knowledge on magnetic nanomaterials, demonstrating the breadth and richness of this research field as well as the growing need to address it through an interdisciplinary approach. The papers collected in this book (two reviews and eight regular articles) report cutting-edge studies on the production and characterization of a variety of novel magnetic nanomaterials (nanoparticles, nanocomposites, thin films and multilayers), which have the potential to play a key role in different technologically advanced sectors, such as biotechnology, nanomedicine, energy, spintronics, data storage, and sensors.

Keywords

Technology: general issues --- History of engineering & technology --- disordered magnetism --- super-spin glass --- glassy correlation length --- magnetic freezing --- nanogranular Au/Fe-oxide --- Fe-oxide nanocrystallites --- synthetic antiferromagnet --- exchange bias --- interlayer exchange coupling --- vibrating sample magnetometry --- CoFeB --- thermally assisted magnetic scanning probe lithography --- magnetron sputtering --- nanoparticles --- sol-gel --- Raman spectroscopy --- UV-blue photoluminescence --- ZnNiO --- Kubelka-Munk function --- Burstein-Moss shift --- substitutional doping --- FePd alloy --- electrodeposition technique --- magnetic properties --- structural characterisation --- ferrimagnetic materials --- superparamagnetism --- magnetic hysteresis --- magnetic materials --- magnetic nanoparticles --- nanocomposites --- nanowires --- martensitic transition --- Heusler alloys --- magnetic shape memory alloys --- twin boundary --- epitaxial Ni-Mn-Ga films --- transmission electron microscopy --- magnetic anisotropy --- iron nitrides --- III-nitrides --- nanocrystals --- density functional theory --- magnetic hyperthermia --- magneto-sonoporation --- stem cells --- superparamagnetic iron oxide particles --- cell labelling --- ultrasounds --- osteogenesis --- bone tissue engineering --- magnetic aggregates --- magnetic interactions --- core/shell nanoparticles --- multicore nanoparticles --- hybrid systems --- mixed nanoparticle systems --- chemical synthesis --- magnetic heating --- disordered magnetism --- super-spin glass --- glassy correlation length --- magnetic freezing --- nanogranular Au/Fe-oxide --- Fe-oxide nanocrystallites --- synthetic antiferromagnet --- exchange bias --- interlayer exchange coupling --- vibrating sample magnetometry --- CoFeB --- thermally assisted magnetic scanning probe lithography --- magnetron sputtering --- nanoparticles --- sol-gel --- Raman spectroscopy --- UV-blue photoluminescence --- ZnNiO --- Kubelka-Munk function --- Burstein-Moss shift --- substitutional doping --- FePd alloy --- electrodeposition technique --- magnetic properties --- structural characterisation --- ferrimagnetic materials --- superparamagnetism --- magnetic hysteresis --- magnetic materials --- magnetic nanoparticles --- nanocomposites --- nanowires --- martensitic transition --- Heusler alloys --- magnetic shape memory alloys --- twin boundary --- epitaxial Ni-Mn-Ga films --- transmission electron microscopy --- magnetic anisotropy --- iron nitrides --- III-nitrides --- nanocrystals --- density functional theory --- magnetic hyperthermia --- magneto-sonoporation --- stem cells --- superparamagnetic iron oxide particles --- cell labelling --- ultrasounds --- osteogenesis --- bone tissue engineering --- magnetic aggregates --- magnetic interactions --- core/shell nanoparticles --- multicore nanoparticles --- hybrid systems --- mixed nanoparticle systems --- chemical synthesis --- magnetic heating


Book
Smart Materials and Devices for Energy Harvesting
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is devoted to energy harvesting from smart materials and devices. It focusses on the latest available techniques recently published by researchers all over the world. Energy Harvesting allows otherwise wasted environmental energy to be converted into electric energy, such as vibrations, wind and solar energy. It is a common experience that the limiting factor for wearable electronics, such as smartphones or wearable bands, or for wireless sensors in harsh environments, is the finite energy stored in onboard batteries. Therefore, the answer to the battery “charge or change” issue is energy harvesting because it converts the energy in the precise location where it is needed. In order to achieve this, suitable smart materials are needed, such as piezoelectrics or magnetostrictives. Moreover, energy harvesting may also be exploited for other crucial applications, such as for the powering of implantable medical/sensing devices for humans and animals. Therefore, energy harvesting from smart materials will become increasingly important in the future. This book provides a broad perspective on this topic for researchers and readers with both physics and engineering backgrounds.

Keywords

Technology: general issues --- History of engineering & technology --- magnetostrictive --- energy harvesting --- wearable --- magnetostrictive materials --- Galfenol --- finite element model --- iron–gallium --- measurements --- preisach model --- piezoelectric ceramics --- lead-free piezoceramics --- virtual instrument --- 3D electrospinning --- PVDF fibers --- piezoelectricity --- piezoelectric sensing --- wind energy harvesting --- snap-through motion --- dynamic stability --- variable-speed --- double-clamped --- width shapes --- piezoelectric energy harvester --- electrodes pair --- MEMS structure --- finite element method --- open circuit voltage --- moving load --- layered double hydroxide solar cell (LDHSC) --- photoactive material --- UV-Vis absorption --- dye sensitized solar cell (DSSC) --- photoactive layered double hydroxide (LDH) --- transition metal modification --- optical bandgap analysis --- renewable energy --- photovoltaic device design --- iron (Fe) modified MgFeAl LDH --- triboelectric effect --- polymer and composites --- low-power devices --- thermomagnetic energy generators --- power generation --- waste heat recovery --- lumped-element modelling --- magnetic shape memory films --- Ni-Mn-Ga film --- magnetization change --- Curie temperature --- finite element simulation --- piezoelectric unit distributions --- electrical potential and energy --- von Mises stress --- PVDF --- piezoelectric material --- human body movements --- glass fiber-reinforced polymer composite --- multifunctional structural laminate --- thermal energy harvesting --- through-thickness thermal gradient --- thermoelectric generator (TEG) --- n/a --- iron-gallium


Book
Smart Materials and Devices for Energy Harvesting
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This book is devoted to energy harvesting from smart materials and devices. It focusses on the latest available techniques recently published by researchers all over the world. Energy Harvesting allows otherwise wasted environmental energy to be converted into electric energy, such as vibrations, wind and solar energy. It is a common experience that the limiting factor for wearable electronics, such as smartphones or wearable bands, or for wireless sensors in harsh environments, is the finite energy stored in onboard batteries. Therefore, the answer to the battery “charge or change” issue is energy harvesting because it converts the energy in the precise location where it is needed. In order to achieve this, suitable smart materials are needed, such as piezoelectrics or magnetostrictives. Moreover, energy harvesting may also be exploited for other crucial applications, such as for the powering of implantable medical/sensing devices for humans and animals. Therefore, energy harvesting from smart materials will become increasingly important in the future. This book provides a broad perspective on this topic for researchers and readers with both physics and engineering backgrounds.

Keywords

magnetostrictive --- energy harvesting --- wearable --- magnetostrictive materials --- Galfenol --- finite element model --- iron–gallium --- measurements --- preisach model --- piezoelectric ceramics --- lead-free piezoceramics --- virtual instrument --- 3D electrospinning --- PVDF fibers --- piezoelectricity --- piezoelectric sensing --- wind energy harvesting --- snap-through motion --- dynamic stability --- variable-speed --- double-clamped --- width shapes --- piezoelectric energy harvester --- electrodes pair --- MEMS structure --- finite element method --- open circuit voltage --- moving load --- layered double hydroxide solar cell (LDHSC) --- photoactive material --- UV-Vis absorption --- dye sensitized solar cell (DSSC) --- photoactive layered double hydroxide (LDH) --- transition metal modification --- optical bandgap analysis --- renewable energy --- photovoltaic device design --- iron (Fe) modified MgFeAl LDH --- triboelectric effect --- polymer and composites --- low-power devices --- thermomagnetic energy generators --- power generation --- waste heat recovery --- lumped-element modelling --- magnetic shape memory films --- Ni-Mn-Ga film --- magnetization change --- Curie temperature --- finite element simulation --- piezoelectric unit distributions --- electrical potential and energy --- von Mises stress --- PVDF --- piezoelectric material --- human body movements --- glass fiber-reinforced polymer composite --- multifunctional structural laminate --- thermal energy harvesting --- through-thickness thermal gradient --- thermoelectric generator (TEG) --- n/a --- iron-gallium

Listing 1 - 9 of 9
Sort by