Narrow your search

Library

FARO (3)

KU Leuven (3)

LUCA School of Arts (3)

Odisee (3)

Thomas More Kempen (3)

Thomas More Mechelen (3)

UCLL (3)

ULB (3)

ULiège (3)

VIVES (3)

More...

Resource type

book (5)


Language

English (5)


Year
From To Submit

2022 (3)

2019 (2)

Listing 1 - 5 of 5
Sort by

Book
New Trends in Photo(Electro)catalysis : From Wastewater Treatment to Energy Production
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint focuses on new trends in photo-electrocatalysis, specifically addressed to the remediation of wastewater and energy production. The remediation of wastewater, up to a level that is acceptable for discharge into receiving waterbodies, involves an ever-growing demand of energy, so effective and low-energy treatment processes are highly desirable. Among the other treatments, photo- and photo-electrochemical treatment processes may be considered as advanced oxidation processes (AOP), which are based on the generation of OH radicals, strong oxidizing agents able to indiscriminately degrade even the most persistent organic compounds. Photocatalysis and photo-electrocatalysis can be considered as effective methods for organic degradation, especially when the semiconductor is active in the range of visible light. Several results are presented on new morphologies and structures, which allow more photoactive, visibly responsive, and stable materials, as well as studies on combined processes in which photo- or photo-electrochemistry contribute to an increase in the sustainability of the whole process, lowering costs and achieving the most valuable final products. In view of the circular economy concept, microbial fuel cell systems are also considered as possible way to recover energy from organic pollutants contained in wastewater.

Keywords

Research & information: general --- Biology, life sciences --- composite --- polymethylmethacrylate --- photocatalytic oxidation --- titanium dioxide --- tetracycline --- ethanol --- photocatalysis --- silver(II) oxide --- mechanical mixture --- in situ deposition --- hydrogen evolution --- Anodic oxidation --- diamond electrodes --- UV irradiation --- ultrasounds --- amoxicillin --- ampicillin --- Composite catalysts --- synergy effect --- solar energy --- wastewater remediation --- photoelectrocatalysis --- TiO2 nanostructures --- Au nanoparticles --- water splitting --- bisphenol A oxidation --- ZnFe2O4 --- degree of inversion --- cation distribution --- photoelectrochemical activity --- porous nickel --- selective corrosion --- hydrogen evolution reaction --- metal sulfides --- H2 production --- photocatalyst --- facet effect --- light trapping --- crystal size --- non-precious metal catalysts --- Cu–B alloy --- microbial fuel cell --- cathode --- environmental engineering --- oxygen electrode --- renewable energy sources --- graphitic carbon nitride --- H2 generation --- Ni–Co catalyst --- electricity production --- advanced oxidation processes --- azo dye --- sustainable resources --- niobium --- water reuse --- water treatment --- AOPs --- zinc oxide --- nanoclusters --- UVA --- visible light --- photocatalytic reduction --- CO2 --- TiO2 photocatalysts --- surface modification --- solar fuel --- magnetron sputtering --- titanium dioxide (TiO2) film --- photocatalytic activity --- metal and non-metal doping --- optical properties --- n/a --- Cu-B alloy --- Ni-Co catalyst


Book
New Trends in Photo(Electro)catalysis : From Wastewater Treatment to Energy Production
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint focuses on new trends in photo-electrocatalysis, specifically addressed to the remediation of wastewater and energy production. The remediation of wastewater, up to a level that is acceptable for discharge into receiving waterbodies, involves an ever-growing demand of energy, so effective and low-energy treatment processes are highly desirable. Among the other treatments, photo- and photo-electrochemical treatment processes may be considered as advanced oxidation processes (AOP), which are based on the generation of OH radicals, strong oxidizing agents able to indiscriminately degrade even the most persistent organic compounds. Photocatalysis and photo-electrocatalysis can be considered as effective methods for organic degradation, especially when the semiconductor is active in the range of visible light. Several results are presented on new morphologies and structures, which allow more photoactive, visibly responsive, and stable materials, as well as studies on combined processes in which photo- or photo-electrochemistry contribute to an increase in the sustainability of the whole process, lowering costs and achieving the most valuable final products. In view of the circular economy concept, microbial fuel cell systems are also considered as possible way to recover energy from organic pollutants contained in wastewater.

Keywords

composite --- polymethylmethacrylate --- photocatalytic oxidation --- titanium dioxide --- tetracycline --- ethanol --- photocatalysis --- silver(II) oxide --- mechanical mixture --- in situ deposition --- hydrogen evolution --- Anodic oxidation --- diamond electrodes --- UV irradiation --- ultrasounds --- amoxicillin --- ampicillin --- Composite catalysts --- synergy effect --- solar energy --- wastewater remediation --- photoelectrocatalysis --- TiO2 nanostructures --- Au nanoparticles --- water splitting --- bisphenol A oxidation --- ZnFe2O4 --- degree of inversion --- cation distribution --- photoelectrochemical activity --- porous nickel --- selective corrosion --- hydrogen evolution reaction --- metal sulfides --- H2 production --- photocatalyst --- facet effect --- light trapping --- crystal size --- non-precious metal catalysts --- Cu–B alloy --- microbial fuel cell --- cathode --- environmental engineering --- oxygen electrode --- renewable energy sources --- graphitic carbon nitride --- H2 generation --- Ni–Co catalyst --- electricity production --- advanced oxidation processes --- azo dye --- sustainable resources --- niobium --- water reuse --- water treatment --- AOPs --- zinc oxide --- nanoclusters --- UVA --- visible light --- photocatalytic reduction --- CO2 --- TiO2 photocatalysts --- surface modification --- solar fuel --- magnetron sputtering --- titanium dioxide (TiO2) film --- photocatalytic activity --- metal and non-metal doping --- optical properties --- n/a --- Cu-B alloy --- Ni-Co catalyst


Book
Microbial Fuel Cells 2018
Author:
ISBN: 3039215345 3039215353 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The rapid growth of global energy consumption and simultaneous waste discharge requires more sustainable energy production and waste disposal/recovery technology. In this respect, microbial fuel cell and bioelectrochemical systems have been highlighted to provide a platform for waste-to-energy and cost-efficient treatment. Microbial fuel cell technology has also contributed to both academia and industry through the development of breakthrough sustainable technologies, enabling cross- and multi-disciplinary approaches in microbiology, biotechnology, electrochemistry, and bioprocess engineering. To further spread these technologies and to help the implementation of microbial fuel cells, this Special Issue, entitled “Microbial Fuel Cells 2018”, was proposed for the international journal Energies. This Special Issue mainly covers original research and studies related to the above-mentioned topic, including, but not limited to, bioelectricity generation, microbial electrochemistry, useful resource recovery, system and process design, and the implementation of microbial fuel cells.


Book
Superhydrophobic Coatings for Corrosion and Tribology
Authors: ---
ISBN: 3039217852 3039217844 Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Superhydrophobic surfaces, with a water contact angle >150°, have attracted both academic and industrial interest due to their wide range of applications, such as water proofing, anti-fogging, antifouling, anti-icing, fluidic drag reduction and anti-corrosion. Currently the majority of superhydrophobic coatings are created using organic chemicals with low surface energy. However, the lack of mechanical strength and heat resistance prevents the use of these coatings in harsh environments. Quality superhydrophobic coatings developed using inorganic materials are therefore highly sought after. Ceramics are of particular interest due to their high mechanical strength, heat and corrosion resistance. Such superhydrophobic coatings have recently been successfully fabricated using a variety of ceramics and different approaches, and have shown the improved wear and tribocorrosion resistance properties. This Special Issue focuses on the recent developments in the fabrication of superhydrophobic coatings and their robustness against corrosion and wear resistance, but the original work on other properties of superhydrophobic coatings are also welcome. In particular, the topics of interest include, but are not limited to: Robust superhydrophobic coatings; Coatings with super-wettability in multifunctional applications; Wetting effects on corrosion and tribology; Hierarchical Coating for wetting and modelling.


Book
New Trends in Photo(Electro)catalysis : From Wastewater Treatment to Energy Production
Author:
Year: 2022 Publisher: Basel MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

This reprint focuses on new trends in photo-electrocatalysis, specifically addressed to the remediation of wastewater and energy production. The remediation of wastewater, up to a level that is acceptable for discharge into receiving waterbodies, involves an ever-growing demand of energy, so effective and low-energy treatment processes are highly desirable. Among the other treatments, photo- and photo-electrochemical treatment processes may be considered as advanced oxidation processes (AOP), which are based on the generation of OH radicals, strong oxidizing agents able to indiscriminately degrade even the most persistent organic compounds. Photocatalysis and photo-electrocatalysis can be considered as effective methods for organic degradation, especially when the semiconductor is active in the range of visible light. Several results are presented on new morphologies and structures, which allow more photoactive, visibly responsive, and stable materials, as well as studies on combined processes in which photo- or photo-electrochemistry contribute to an increase in the sustainability of the whole process, lowering costs and achieving the most valuable final products. In view of the circular economy concept, microbial fuel cell systems are also considered as possible way to recover energy from organic pollutants contained in wastewater.

Keywords

Research & information: general --- Biology, life sciences --- composite --- polymethylmethacrylate --- photocatalytic oxidation --- titanium dioxide --- tetracycline --- ethanol --- photocatalysis --- silver(II) oxide --- mechanical mixture --- in situ deposition --- hydrogen evolution --- Anodic oxidation --- diamond electrodes --- UV irradiation --- ultrasounds --- amoxicillin --- ampicillin --- Composite catalysts --- synergy effect --- solar energy --- wastewater remediation --- photoelectrocatalysis --- TiO2 nanostructures --- Au nanoparticles --- water splitting --- bisphenol A oxidation --- ZnFe2O4 --- degree of inversion --- cation distribution --- photoelectrochemical activity --- porous nickel --- selective corrosion --- hydrogen evolution reaction --- metal sulfides --- H2 production --- photocatalyst --- facet effect --- light trapping --- crystal size --- non-precious metal catalysts --- Cu-B alloy --- microbial fuel cell --- cathode --- environmental engineering --- oxygen electrode --- renewable energy sources --- graphitic carbon nitride --- H2 generation --- Ni-Co catalyst --- electricity production --- advanced oxidation processes --- azo dye --- sustainable resources --- niobium --- water reuse --- water treatment --- AOPs --- zinc oxide --- nanoclusters --- UVA --- visible light --- photocatalytic reduction --- CO2 --- TiO2 photocatalysts --- surface modification --- solar fuel --- magnetron sputtering --- titanium dioxide (TiO2) film --- photocatalytic activity --- metal and non-metal doping --- optical properties --- composite --- polymethylmethacrylate --- photocatalytic oxidation --- titanium dioxide --- tetracycline --- ethanol --- photocatalysis --- silver(II) oxide --- mechanical mixture --- in situ deposition --- hydrogen evolution --- Anodic oxidation --- diamond electrodes --- UV irradiation --- ultrasounds --- amoxicillin --- ampicillin --- Composite catalysts --- synergy effect --- solar energy --- wastewater remediation --- photoelectrocatalysis --- TiO2 nanostructures --- Au nanoparticles --- water splitting --- bisphenol A oxidation --- ZnFe2O4 --- degree of inversion --- cation distribution --- photoelectrochemical activity --- porous nickel --- selective corrosion --- hydrogen evolution reaction --- metal sulfides --- H2 production --- photocatalyst --- facet effect --- light trapping --- crystal size --- non-precious metal catalysts --- Cu-B alloy --- microbial fuel cell --- cathode --- environmental engineering --- oxygen electrode --- renewable energy sources --- graphitic carbon nitride --- H2 generation --- Ni-Co catalyst --- electricity production --- advanced oxidation processes --- azo dye --- sustainable resources --- niobium --- water reuse --- water treatment --- AOPs --- zinc oxide --- nanoclusters --- UVA --- visible light --- photocatalytic reduction --- CO2 --- TiO2 photocatalysts --- surface modification --- solar fuel --- magnetron sputtering --- titanium dioxide (TiO2) film --- photocatalytic activity --- metal and non-metal doping --- optical properties

Listing 1 - 5 of 5
Sort by