Listing 1 - 10 of 10 |
Sort by
|
Choose an application
Environmental Sciences and Forestry. Forestry --- Neem products. --- Neem --- Neem. --- Forest Trees --- Tropical Species.
Choose an application
Azadirachtin --- Spodoptera littoralis --- Botanical insecticides --- Azadirachta indica --- Neem --- Margousier --- Antiappetant --- Nske --- Neem --- Margousier --- Antiappetant --- Nske
Choose an application
Azadirachta indica --- Extension forestière --- Afforestation --- Plante pesticide --- Pesticide crops --- Agroforesterie --- agroforestry --- Arbre forestier --- forest trees --- Recherche agronomique --- Agricultural research --- Zone tropicale --- Tropical zones --- Azadirachtine --- Azadirachtin --- Neem products. --- Neem. --- Environmental Sciences and Forestry. Forestry --- Forest Trees --- Tropical Species --- Tropical Species. --- Antelaea azadirachta --- Margosa --- Melia azadirachta --- Melia indica --- Melia parviflora --- Neem tree --- Nim --- Plant products --- Azadirachta --- Neem --- Neem products --- Diffusion of Innovation --- Environment --- Environmental Impact --- Environmental Impacts --- Impact, Environmental --- Impacts, Environmental --- Environments --- Environmental Health --- Innovation Diffusion --- Diffusion, Innovation --- Culturally Appropriate Technology --- Information Dissemination --- Neem Tree --- Azadirachta indicas --- Azadirachtas --- Melia azadirachtas --- Neem Trees --- Tree, Neem --- Trees, Neem --- azadirachtas, Melia --- indicas, Azadirachta --- E-books --- Bostid
Choose an application
Botanical pesticides --- Botanische pesticiden --- Margosa --- Margousier azadirachta --- Natural pest control agents --- Natural pesticides --- Naturally occurring pesticides --- Natuurlijke pesticiden --- Neem --- Neem products --- Nim --- Pesticiden [Botanische ] --- Pesticiden [Natuurlijke ] --- Pesticides botaniques --- Pesticides from plants --- Pesticides naturels --- Pesticides of plant origin --- Phytochemical pesticides --- Plant-derived pesticides --- Produits tires du margousier azadirachta --- Neem products. --- Neem. --- Environmental Sciences and Forestry. Forestry --- Forest Trees --- Tropical Species --- Tropical Species. --- Pests --- Integrated control
Choose an application
The chemicals from plant sources, generally termed as phytochemicals, play an important role in acceptance or rejection of the plant by the pests as they could be distasteful or toxic on one hand or on the other hand specialist herbivores have the capability to feed on many such chemicals, as they are able to process these natural products in a manner that is beneficial to them. In the wake of increasing environmental degradation due to burgeoning synthetic chemicals, there has been a process going on to rediscover the usefulness of plants and herbs and a continued effort for more than 2 decades has been to study the green products for cures for several ailments and pest management. In fact, according to Indian Medicinal Plants: A Sectoral Study, the global trade for medicinal plants amounts to about US $ 60 billion and the world demand continues to grow at the rate of 7 per cent per annum. Although many such plants are known in literature, neem has been one of trees with mani-fold virtues. Indian neem tree, Azadirachta indica A. Juss, which is a large evergreen tree, is an outstanding example among plants that has been subject matter of numerous scientific studies concerning its utilization in medicine, industry and agriculture. So far neem preparations have been evaluated against more than 500 species of insects and more than 400 hundred are reported to be susceptible at different concentrations.
Neem insecticide. --- Neem. --- Plant diseases. --- Evolution (Biology). --- Botany. --- Plant Pathology. --- Evolutionary Biology. --- Plant Sciences. --- Plant pathology. --- Evolutionary biology. --- Plant science. --- Botanical science --- Phytobiology --- Phytography --- Phytology --- Plant biology --- Plant science --- Biology --- Natural history --- Plants --- Animal evolution --- Animals --- Biological evolution --- Darwinism --- Evolutionary biology --- Evolutionary science --- Origin of species --- Evolution --- Biological fitness --- Homoplasy --- Natural selection --- Phylogeny --- Botany --- Communicable diseases in plants --- Crop diseases --- Crops --- Diseases of plants --- Microbial diseases in plants --- Pathological botany --- Pathology, Vegetable --- Phytopathology --- Plant pathology --- Vegetable pathology --- Agricultural pests --- Crop losses --- Diseased plants --- Phytopathogenic microorganisms --- Plant pathologists --- Plant quarantine --- Pathology --- Diseases and pests --- Diseases --- Wounds and injuries --- Floristic botany --- Botanical insecticides --- Neem products --- Antelaea azadirachta --- Azadirachta indica --- Margosa --- Melia azadirachta --- Melia indica --- Melia parviflora --- Neem tree --- Nim --- Azadirachta
Choose an application
This reprint of “Metal Nanoparticles as Catalysts for Green Applications” collects recent works of researchers on metal nanoparticles as catalysts for green applications. All works deal with designing chemical products and processes that generate and use less (or preferably no) hazardous substances by applying the principles of green chemistry. Despite the interdisciplinary nature of the different applications involved, ranging from pure chemistry to material science, from chemical engineering to physical chemistry, in this reprint there are common characteristics connecting the areas together, and they can be described by two words: sustainability and catalysis.
Technology: general issues --- acetylene hydrogenation --- kinetic model --- catalyst decay --- process modeling --- Al2O3 --- bimetallic catalyst --- syngas --- methane --- partial oxidation --- ZrO2 --- metal-organic framework --- bimetallic metal-organic frameworks --- decarboxylative amidation --- polymeric catalytic membranes --- electrospinning --- HMF oxidation --- glucose --- biochemicals --- MCM-41 --- bimetallic --- reactivity --- product selectivity --- neem --- mint --- nZVI synthesis --- lead --- nickel --- soil remediation --- ethanol steam reforming --- Ni/CeO2 --- microemulsion --- coke resistance --- lanthanum doping --- hydrodeoxygenation --- guaiacol --- regeneration --- catalyst deactivation --- acetylene hydrogenation --- kinetic model --- catalyst decay --- process modeling --- Al2O3 --- bimetallic catalyst --- syngas --- methane --- partial oxidation --- ZrO2 --- metal-organic framework --- bimetallic metal-organic frameworks --- decarboxylative amidation --- polymeric catalytic membranes --- electrospinning --- HMF oxidation --- glucose --- biochemicals --- MCM-41 --- bimetallic --- reactivity --- product selectivity --- neem --- mint --- nZVI synthesis --- lead --- nickel --- soil remediation --- ethanol steam reforming --- Ni/CeO2 --- microemulsion --- coke resistance --- lanthanum doping --- hydrodeoxygenation --- guaiacol --- regeneration --- catalyst deactivation
Choose an application
This reprint of “Metal Nanoparticles as Catalysts for Green Applications” collects recent works of researchers on metal nanoparticles as catalysts for green applications. All works deal with designing chemical products and processes that generate and use less (or preferably no) hazardous substances by applying the principles of green chemistry. Despite the interdisciplinary nature of the different applications involved, ranging from pure chemistry to material science, from chemical engineering to physical chemistry, in this reprint there are common characteristics connecting the areas together, and they can be described by two words: sustainability and catalysis.
Technology: general issues --- acetylene hydrogenation --- kinetic model --- catalyst decay --- process modeling --- Al2O3 --- bimetallic catalyst --- syngas --- methane --- partial oxidation --- ZrO2 --- metal–organic framework --- bimetallic metal–organic frameworks --- decarboxylative amidation --- polymeric catalytic membranes --- electrospinning --- HMF oxidation --- glucose --- biochemicals --- MCM-41 --- bimetallic --- reactivity --- product selectivity --- neem --- mint --- nZVI synthesis --- lead --- nickel --- soil remediation --- ethanol steam reforming --- Ni/CeO2 --- microemulsion --- coke resistance --- lanthanum doping --- hydrodeoxygenation --- guaiacol --- regeneration --- catalyst deactivation --- n/a --- metal-organic framework --- bimetallic metal-organic frameworks
Choose an application
This reprint of “Metal Nanoparticles as Catalysts for Green Applications” collects recent works of researchers on metal nanoparticles as catalysts for green applications. All works deal with designing chemical products and processes that generate and use less (or preferably no) hazardous substances by applying the principles of green chemistry. Despite the interdisciplinary nature of the different applications involved, ranging from pure chemistry to material science, from chemical engineering to physical chemistry, in this reprint there are common characteristics connecting the areas together, and they can be described by two words: sustainability and catalysis.
acetylene hydrogenation --- kinetic model --- catalyst decay --- process modeling --- Al2O3 --- bimetallic catalyst --- syngas --- methane --- partial oxidation --- ZrO2 --- metal–organic framework --- bimetallic metal–organic frameworks --- decarboxylative amidation --- polymeric catalytic membranes --- electrospinning --- HMF oxidation --- glucose --- biochemicals --- MCM-41 --- bimetallic --- reactivity --- product selectivity --- neem --- mint --- nZVI synthesis --- lead --- nickel --- soil remediation --- ethanol steam reforming --- Ni/CeO2 --- microemulsion --- coke resistance --- lanthanum doping --- hydrodeoxygenation --- guaiacol --- regeneration --- catalyst deactivation --- n/a --- metal-organic framework --- bimetallic metal-organic frameworks
Choose an application
The global biodiversity and climate emergencies demand transformative changes to human activities. For example, food production relies on synthetic, industrial and non-sustainable products for managing pests, weeds and diseases of crops. Sustainable farming requires approaches to managing these agricultural constraints that are more environmentally benign and work with rather than against nature. Increasing pressure on synthetic products has reinvigorated efforts to identify alternative pest management options, including plant-based solutions that are environmentally benign and can be tailored to different farmers’ needs, from commercial to small holder and subsistence farming. Botanical insecticides and pesticidal plants can offer a novel, effective and more sustainable alternative to synthetic products for controlling pests, diseases and weeds. This Special Issue reviews and reports the latest developments in plant-based pesticides from identification of bioactive plant chemicals, mechanisms of activity and validation of their use in horticulture and disease vector control. Other work reports applications in rice weeds, combination biopesticides and how chemistry varies spatially and influences the effectiveness of botanicals in different locations. Three reviews assess wider questions around the potential of plant-based pest management to address the global challenges of new, invasive and established crop pests and as-yet underexploited pesticidal plants.
antifeedant --- encapsulation --- induced systemic response --- corn --- barnyard grass --- rutin --- deguelin --- botanical pesticides --- insect behavior --- organic farming --- aphids --- leaf disc assay --- Melia volkensii --- rotenoids --- botanicals --- entomopathogenic fungi --- anise --- oil emulsion entrapment --- integrated pest management --- sesquiterpene --- botanical pesticide --- pest management --- neem --- insecticidal activity --- insect pest --- insects --- resistance --- biopesticide --- Tetranychus urticae --- karanja --- Colorado potato beetle --- essential oils --- Y-tube olfactometer --- parasitoid --- pests --- chemotype 3 --- limonoid --- prospects --- pyrethrum --- botanical insecticides --- weed control --- cover crops --- agro-ecological intensification --- spatial-temporal variation --- survival analysis --- Senecio fistulosus --- organic pesticide --- synergism --- growth inhibitor --- biopesticides --- tryptophan --- acaricide --- pyrrolizidine alkaloid --- phytotoxic activity --- phenylalanine --- rice --- Meliaceae --- invasive species --- botanical active substances --- structure-activity relationships --- pesticidal plant --- fennel --- spray drying --- foliar fertiliser --- sustainable agriculture --- Italian ryegrass
Choose an application
This book mainly focuses on the processing and applications of polymer and its composites. With the fast development of the petroleum industry, polymer materials have been widely utilized in our daily lives. The various processing methods of polymers determine the final properties and performance of products. In addition, the introduction of different fillers, including inorganic fillers, metal oxide, natural fibers, and so on, can increase the physical and chemical properties of polymer composites, which will further broaden their practical applications. Special attention will be paid to the type of processing methods and the functional fillers on the performance of polymer composites.
Technology: general issues --- History of engineering & technology --- Materials science --- waterborne polyurethane --- self-healing --- dynamic disulfide bond --- perovskite solar cell --- hole transport layer --- carbon materials --- polymeric composites --- solar energy materials --- PBAT --- MXene --- nanocomposite --- gas barrier properties --- biaxial stretching --- longan --- fruit --- polymeric films --- antioxidant activity --- enzymatic browning --- neem --- propyl disulfide --- microbial decay --- essential oil --- thickener --- dispersant --- graphene --- lignocellulose nanofibers --- adsorption --- deep eutectic solvents --- cationization --- dissolved and colloidal substances removal --- polyetheretherketone --- short fiber-reinforced --- material property --- lapping machinability --- cellulose nanofiber --- silica --- polypropylene --- composite --- hybrid filler --- thermoplastic silicone rubber --- backscattered electrons --- compatibility layer --- scanning electron microscope --- dynamic vulcanization --- cyclic loading --- deflection --- BFRP-RC beams --- steel fiber --- analytical model --- rosin-based composite membranes --- dencichine --- electrostatic spinning technology --- notoginseng extracts --- chrysin --- molecular imprinting --- adsorption performance --- binary functional monomers
Listing 1 - 10 of 10 |
Sort by
|