Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

VIVES (1)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2021 (3)

Listing 1 - 3 of 3
Sort by

Book
Advances in Remote Sensing for Global Forest Monitoring
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The topics of the book cover forest parameter estimation, methods to assess land cover and change, forest disturbances and degradation, and forest soil drought estimations. Airborne laser scanner data, aerial images, as well as data from passive and active sensors of different spatial, spectral and temporal resolutions have been utilized. Parametric and non-parametric methods including machine and deep learning methods have been employed. Uncertainty estimation is a key topic in each study. In total, 15 articles are included, of which one is a review article dealing with methods employed in remote sensing aided greenhouse gas inventories, and one is the Editorial summary presenting a short review of each article.

Keywords

Research & information: general --- Environmental economics --- forest structure change --- EBLUP --- small area estimation --- multitemporal LiDAR and stand-level estimates --- forest cover --- Sentinel-1 --- Sentinel-2 --- data fusion --- machine-learning --- Germany --- South Africa --- temperate forest --- savanna --- classification --- Sentinel 2 --- land use land cover --- improved k-NN --- logistic regression --- random forest --- support vector machine --- statistical estimator --- IPCC good practice guidelines --- activity data --- emissions factor --- removals factor --- Picea crassifolia Kom --- compatible equation --- nonlinear seemingly unrelated regression --- error-in-variable modeling --- leave-one-out cross-validation --- digital surface model --- digital terrain model --- canopy height model --- constrained neighbor interpolation --- ordinary neighbor interpolation --- point cloud density --- stereo imagery --- remotely sensed LAI --- field measured LAI --- validation --- magnitude --- uncertainty --- temporal dynamics --- state space models --- forest disturbance mapping --- near real-time monitoring --- CUSUM --- NRT monitoring --- deforestation --- degradation --- tropical forest --- tropical peat --- forest type --- deep learning --- FCN8s --- CRFasRNN --- GF2 --- dual-FCN8s --- random forests --- error propagation --- bootstrapping --- Landsat --- LiDAR --- La Rioja --- forest area change --- data assessment --- uncertainty evaluation --- inconsistency --- forest monitoring --- drought --- time series satellite data --- Bowen ratio --- carbon flux --- boreal forest --- windstorm damage --- synthetic aperture radar --- C-band --- genetic algorithm --- multinomial logistic regression --- forest structure change --- EBLUP --- small area estimation --- multitemporal LiDAR and stand-level estimates --- forest cover --- Sentinel-1 --- Sentinel-2 --- data fusion --- machine-learning --- Germany --- South Africa --- temperate forest --- savanna --- classification --- Sentinel 2 --- land use land cover --- improved k-NN --- logistic regression --- random forest --- support vector machine --- statistical estimator --- IPCC good practice guidelines --- activity data --- emissions factor --- removals factor --- Picea crassifolia Kom --- compatible equation --- nonlinear seemingly unrelated regression --- error-in-variable modeling --- leave-one-out cross-validation --- digital surface model --- digital terrain model --- canopy height model --- constrained neighbor interpolation --- ordinary neighbor interpolation --- point cloud density --- stereo imagery --- remotely sensed LAI --- field measured LAI --- validation --- magnitude --- uncertainty --- temporal dynamics --- state space models --- forest disturbance mapping --- near real-time monitoring --- CUSUM --- NRT monitoring --- deforestation --- degradation --- tropical forest --- tropical peat --- forest type --- deep learning --- FCN8s --- CRFasRNN --- GF2 --- dual-FCN8s --- random forests --- error propagation --- bootstrapping --- Landsat --- LiDAR --- La Rioja --- forest area change --- data assessment --- uncertainty evaluation --- inconsistency --- forest monitoring --- drought --- time series satellite data --- Bowen ratio --- carbon flux --- boreal forest --- windstorm damage --- synthetic aperture radar --- C-band --- genetic algorithm --- multinomial logistic regression


Book
Advances in Remote Sensing for Global Forest Monitoring
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The topics of the book cover forest parameter estimation, methods to assess land cover and change, forest disturbances and degradation, and forest soil drought estimations. Airborne laser scanner data, aerial images, as well as data from passive and active sensors of different spatial, spectral and temporal resolutions have been utilized. Parametric and non-parametric methods including machine and deep learning methods have been employed. Uncertainty estimation is a key topic in each study. In total, 15 articles are included, of which one is a review article dealing with methods employed in remote sensing aided greenhouse gas inventories, and one is the Editorial summary presenting a short review of each article.

Keywords

Research & information: general --- Environmental economics --- forest structure change --- EBLUP --- small area estimation --- multitemporal LiDAR and stand-level estimates --- forest cover --- Sentinel-1 --- Sentinel-2 --- data fusion --- machine-learning --- Germany --- South Africa --- temperate forest --- savanna --- classification --- Sentinel 2 --- land use land cover --- improved k-NN --- logistic regression --- random forest --- support vector machine --- statistical estimator --- IPCC good practice guidelines --- activity data --- emissions factor --- removals factor --- Picea crassifolia Kom --- compatible equation --- nonlinear seemingly unrelated regression --- error-in-variable modeling --- leave-one-out cross-validation --- digital surface model --- digital terrain model --- canopy height model --- constrained neighbor interpolation --- ordinary neighbor interpolation --- point cloud density --- stereo imagery --- remotely sensed LAI --- field measured LAI --- validation --- magnitude --- uncertainty --- temporal dynamics --- state space models --- forest disturbance mapping --- near real-time monitoring --- CUSUM --- NRT monitoring --- deforestation --- degradation --- tropical forest --- tropical peat --- forest type --- deep learning --- FCN8s --- CRFasRNN --- GF2 --- dual-FCN8s --- random forests --- error propagation --- bootstrapping --- Landsat --- LiDAR --- La Rioja --- forest area change --- data assessment --- uncertainty evaluation --- inconsistency --- forest monitoring --- drought --- time series satellite data --- Bowen ratio --- carbon flux --- boreal forest --- windstorm damage --- synthetic aperture radar --- C-band --- genetic algorithm --- multinomial logistic regression --- n/a


Book
Advances in Remote Sensing for Global Forest Monitoring
Authors: --- --- ---
Year: 2021 Publisher: Basel, Switzerland MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

The topics of the book cover forest parameter estimation, methods to assess land cover and change, forest disturbances and degradation, and forest soil drought estimations. Airborne laser scanner data, aerial images, as well as data from passive and active sensors of different spatial, spectral and temporal resolutions have been utilized. Parametric and non-parametric methods including machine and deep learning methods have been employed. Uncertainty estimation is a key topic in each study. In total, 15 articles are included, of which one is a review article dealing with methods employed in remote sensing aided greenhouse gas inventories, and one is the Editorial summary presenting a short review of each article.

Keywords

forest structure change --- EBLUP --- small area estimation --- multitemporal LiDAR and stand-level estimates --- forest cover --- Sentinel-1 --- Sentinel-2 --- data fusion --- machine-learning --- Germany --- South Africa --- temperate forest --- savanna --- classification --- Sentinel 2 --- land use land cover --- improved k-NN --- logistic regression --- random forest --- support vector machine --- statistical estimator --- IPCC good practice guidelines --- activity data --- emissions factor --- removals factor --- Picea crassifolia Kom --- compatible equation --- nonlinear seemingly unrelated regression --- error-in-variable modeling --- leave-one-out cross-validation --- digital surface model --- digital terrain model --- canopy height model --- constrained neighbor interpolation --- ordinary neighbor interpolation --- point cloud density --- stereo imagery --- remotely sensed LAI --- field measured LAI --- validation --- magnitude --- uncertainty --- temporal dynamics --- state space models --- forest disturbance mapping --- near real-time monitoring --- CUSUM --- NRT monitoring --- deforestation --- degradation --- tropical forest --- tropical peat --- forest type --- deep learning --- FCN8s --- CRFasRNN --- GF2 --- dual-FCN8s --- random forests --- error propagation --- bootstrapping --- Landsat --- LiDAR --- La Rioja --- forest area change --- data assessment --- uncertainty evaluation --- inconsistency --- forest monitoring --- drought --- time series satellite data --- Bowen ratio --- carbon flux --- boreal forest --- windstorm damage --- synthetic aperture radar --- C-band --- genetic algorithm --- multinomial logistic regression --- n/a

Listing 1 - 3 of 3
Sort by