Narrow your search

Library

FARO (1)

KU Leuven (1)

LUCA School of Arts (1)

Odisee (1)

Thomas More Kempen (1)

Thomas More Mechelen (1)

UCLL (1)

ULB (1)

ULiège (1)

VIVES (1)

More...

Resource type

book (3)


Language

English (3)


Year
From To Submit

2019 (3)

Listing 1 - 3 of 3
Sort by

Book
Plasma Catalysis
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC


Book
Plasma Catalysis
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC


Book
Plasma Catalysis
Author:
Year: 2019 Publisher: MDPI - Multidisciplinary Digital Publishing Institute

Loading...
Export citation

Choose an application

Bookmark

Abstract

Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC

Keywords

in plasma-catalysis --- gas composition --- radiofrequency plasma --- calcium carbonate decomposition --- phenanthrene --- methane reforming --- dry reforming of methane --- NH3 decomposition --- dielectric barrier discharge --- gas temperature --- relative humidity --- CO selectivity --- isotope labelling --- nanocatalyst --- packed-bed dielectric barrier discharge --- Ga–In alloys --- mineralization --- rotating gliding arc plasma --- dielectric barrier discharge (DBD) --- catalyst --- plasmas-catalysis --- H2S oxidation --- post plasma-catalysis --- naphthalene --- VOC abatement --- nonstoichiometry --- zeolites --- H2 generation --- tar destruction --- adsorption-plasma catalysis --- NOx conversion --- catalyst preparation --- CeO2 --- nonequilibrium plasma --- non-thermal plasmas --- mode transition --- bimetal --- DBD plasma --- surface filament --- self-cooling --- indium --- plasma catalysis --- gallium --- perovskite catalysts --- ammonia synthesis --- packing materials --- air pollution --- toluene --- particle-in- cell/Monte Carlo collision method --- CO2 decomposition --- Manganese --- in plasma-catalysis --- gas composition --- radiofrequency plasma --- calcium carbonate decomposition --- phenanthrene --- methane reforming --- dry reforming of methane --- NH3 decomposition --- dielectric barrier discharge --- gas temperature --- relative humidity --- CO selectivity --- isotope labelling --- nanocatalyst --- packed-bed dielectric barrier discharge --- Ga–In alloys --- mineralization --- rotating gliding arc plasma --- dielectric barrier discharge (DBD) --- catalyst --- plasmas-catalysis --- H2S oxidation --- post plasma-catalysis --- naphthalene --- VOC abatement --- nonstoichiometry --- zeolites --- H2 generation --- tar destruction --- adsorption-plasma catalysis --- NOx conversion --- catalyst preparation --- CeO2 --- nonequilibrium plasma --- non-thermal plasmas --- mode transition --- bimetal --- DBD plasma --- surface filament --- self-cooling --- indium --- plasma catalysis --- gallium --- perovskite catalysts --- ammonia synthesis --- packing materials --- air pollution --- toluene --- particle-in- cell/Monte Carlo collision method --- CO2 decomposition --- Manganese

Listing 1 - 3 of 3
Sort by