Listing 1 - 3 of 3 |
Sort by
|
Choose an application
As CMOS scaling is approaching the fundamental physical limits, a wide range of new nanoelectronic materials and devices have been proposed and explored to extend and/or replace the current electronic devices and circuits so as to maintain progress with respect to speed and integration density. The major limitations, including low carrier mobility, degraded subthreshold slope, and heat dissipation, have become more challenging to address as the size of silicon-based metal oxide semiconductor field effect transistors (MOSFETs) has decreased to nanometers, while device integration density has increased. This book aims to present technical approaches that address the need for new nanoelectronic materials and devices. The focus is on new concepts and knowledge in nanoscience and nanotechnology for applications in logic, memory, sensors, photonics, and renewable energy. This research on nanoelectronic materials and devices will be instructive in finding solutions to address the challenges of current electronics in switching speed, power consumption, and heat dissipation and will be of great interest to academic society and the industry.
quantum mechanical --- n/a --- neuromorphic computation --- off-current (Ioff) --- double-gate tunnel field-effect-transistor --- topological insulator --- back current blocking layer (BCBL) --- CMOS power amplifier IC --- information integration --- distributed Bragg --- spike-timing-dependent plasticity --- electron affinity --- enhancement-mode --- current collapse --- gallium nitride (GaN) --- band-to-band tunneling --- vertical field-effect transistor (VFET) --- ionic liquid --- luminescent centres --- thermal coupling --- vision localization --- PC1D --- UAV --- ZnO/Si --- dual-switching transistor --- memristor --- field-effect transistor --- higher order synchronization --- shallow trench isolation (STI) --- memristive device --- on-current (Ion) --- low voltage --- reflection transmision method --- dielectric layer --- source/drain (S/D) --- high efficiency --- nanostructure synthesis --- InAlN/GaN heterostructure --- supercapacitor --- high-electron mobility transistor (HEMTs) --- heterojunction --- p-GaN --- recessed channel array transistor (RCAT) --- gate field effect --- charge injection --- saddle FinFET (S-FinFET) --- L-shaped tunnel field-effect-transistor --- conductivity --- energy storage --- hierarchical --- PECVD --- sample grating --- MISHEMT --- bistability --- threshold voltage (VTH) --- bandgap tuning --- oscillatory neural networks --- UV irradiation --- Mott transition --- third harmonic tuning --- topological magnetoelectric effect --- cross-gain modulation --- 2D material --- solar cells --- silicon on insulator (SOI) --- Green’s function --- optoelectronic devices --- semiconductor optical amplifier --- ZnO films --- graphene --- AlGaN/GaN --- polarization effect --- two-photon process --- conductive atomic force microscopy (cAFM) --- 2DEG density --- vanadium dioxide --- interface traps --- potential drop width (PDW) --- pattern recognition --- drain-induced barrier lowering (DIBL) --- atomic layer deposition (ALD) --- normally off power devices --- gate-induced drain leakage (GIDL) --- insulator–metal transition (IMT) --- zinc oxide --- synaptic device --- subthreshold slope (SS) --- landing --- silicon --- corner-effect --- conditioned reflex --- quantum dot --- gallium nitride --- bismuth ions --- conduction band offset --- variational form --- Green's function --- insulator-metal transition (IMT)
Choose an application
With this book, we wish to honor the lifework of K. Alex Müller and present him with this book on the occasion of his 94th birthday. We are convinced that he will very much enjoy reading it. We would like to thank all contributors to this book, who addressed topics complementary and related to his work. The articles of the book represent the efforts in solid state physics – spanning more than 60 years – which have been groundbreaking in scientific and applied sciences. Many of the current hot topics are derived from this earlier work which has pioneered the way toward new experimental tools and/or refined techniques. From this point of view, the book presents, on one hand, a historical review and, on the other hand, a directory of possible future research.
ferroelastic --- WO3 --- polarons --- polaronic superconductivity --- transition metal dichalcogenides --- magnetic semiconductor spintronics --- n/a --- transition metal oxides --- lattice–spin–charge landscapes --- elasticity --- superconductivity --- cuprates --- magnetic penetration depth --- order parameter --- superconducting gap structure --- Kondo effect --- spin relaxation rate --- magnetic resonance --- strontium titanate --- quantum paraelectricity --- quantum fluctuations --- ferroelectricity --- isotope exchange --- external stress --- polar metal --- phase coexistence --- magnetoelectric multiglass --- Electron Paramagnetic Resonance (EPR) --- ENDOR --- Jahn-Teller --- color centers --- 3d impurities --- perovskite --- SrTiO3 --- 18O --- isotope substitution --- SrTiO3/LaAlO3 --- interface --- heterostructure --- tungsten oxide --- phase separation --- cuprate superconductors --- electronic correlations --- NMR --- pseudogap --- perovskite crystals --- Pseudo-Jahn-Teller effect --- multiferroicity --- permittivity --- flexoelectricity --- polar nanoregions --- orientational polarization --- LSCO --- anti-Jahn-Teller effect --- first-principles calculation --- Kamimura-Suwa model --- spin-polarized band --- Hund’s coupling spin-triplet and spin-singlet multiplets --- high-temperature superconductivity --- correlated Femi liquid --- charge density wave --- fluctuation --- strange metal --- coherence length --- granular superconductivity --- Mott transition --- BCS–BEC cross-over --- electron-phonon interaction --- topological insulator --- topological materials --- transition metal dichalcogenide --- helium atom scattering --- perovskite oxides --- phase transitions --- high-temperature cuprate superconductors --- lattice-spin-charge landscapes --- Hund's coupling spin-triplet and spin-singlet multiplets --- BCS-BEC cross-over
Choose an application
With this book, we wish to honor the lifework of K. Alex Müller and present him with this book on the occasion of his 94th birthday. We are convinced that he will very much enjoy reading it. We would like to thank all contributors to this book, who addressed topics complementary and related to his work. The articles of the book represent the efforts in solid state physics – spanning more than 60 years – which have been groundbreaking in scientific and applied sciences. Many of the current hot topics are derived from this earlier work which has pioneered the way toward new experimental tools and/or refined techniques. From this point of view, the book presents, on one hand, a historical review and, on the other hand, a directory of possible future research.
Research & information: general --- Mathematics & science --- ferroelastic --- WO3 --- polarons --- polaronic superconductivity --- transition metal dichalcogenides --- magnetic semiconductor spintronics --- transition metal oxides --- lattice-spin-charge landscapes --- elasticity --- superconductivity --- cuprates --- magnetic penetration depth --- order parameter --- superconducting gap structure --- Kondo effect --- spin relaxation rate --- magnetic resonance --- strontium titanate --- quantum paraelectricity --- quantum fluctuations --- ferroelectricity --- isotope exchange --- external stress --- polar metal --- phase coexistence --- magnetoelectric multiglass --- Electron Paramagnetic Resonance (EPR) --- ENDOR --- Jahn-Teller --- color centers --- 3d impurities --- perovskite --- SrTiO3 --- 18O --- isotope substitution --- SrTiO3/LaAlO3 --- interface --- heterostructure --- tungsten oxide --- phase separation --- cuprate superconductors --- electronic correlations --- NMR --- pseudogap --- perovskite crystals --- Pseudo-Jahn-Teller effect --- multiferroicity --- permittivity --- flexoelectricity --- polar nanoregions --- orientational polarization --- LSCO --- anti-Jahn-Teller effect --- first-principles calculation --- Kamimura-Suwa model --- spin-polarized band --- Hund's coupling spin-triplet and spin-singlet multiplets --- high-temperature superconductivity --- correlated Femi liquid --- charge density wave --- fluctuation --- strange metal --- coherence length --- granular superconductivity --- Mott transition --- BCS-BEC cross-over --- electron-phonon interaction --- topological insulator --- topological materials --- transition metal dichalcogenide --- helium atom scattering --- perovskite oxides --- phase transitions --- high-temperature cuprate superconductors
Listing 1 - 3 of 3 |
Sort by
|