Listing 1 - 4 of 4 |
Sort by
|
Choose an application
This book presents articles written by leading experts surveying several major subfields in Condensed Matter Physics and related sciences. The articles are based on invited talks presented at a recent conference honoring Nobel laureate Philip W. Anderson of Princeton University, who coined the phrase "More is different" while formulating his contention that all fields of physics, indeed all of science, involve equally fundamental insights. The articles introduce and survey current research in areas that have been close to Anderson's interests. Together, they illustrate both the deep impact that Anderson has had in this multifaceted field during the past half century and the progress spawned by his insights. The contributors cover numerous topics under the umbrellas of superconductivity, superfluidity, magnetism, electron localization, strongly interacting electronic systems, heavy fermions, and disorder and frustration in glass and spin-glass systems. They also describe interdisciplinary areas such as the science of olfaction and color vision, the screening of macroions in electrolytes, scaling and renormalization in cosmology, forest fires and the spread of measles, and the investigation of "NP-complete" problems in computer science. The articles are authored by Philip W. Anderson, Per Bak and Kan Chen, G. Baskaran, Juan Carlos Campuzano, Paul Chaikin, John Hopfield, Bernhard Keimer, Scott Kirkpatrick and Bart Selman, Gabriel Kotliar, Patrick Lee, Yoshiteru Maeno, Marc Mezard, Douglas Osheroff et al., H. R. Ott, L. Pietronero et al., T. V. Ramakrishnan, A. Ramirez, Myriam Sarachik, T. Senthil and Matthew P. A. Fisher, B. I. Shklovskii et al., and F. Steglich et al.
Condensed matter. --- Condensed materials --- Condensed media --- Condensed phase --- Materials, Condensed --- Media, Condensed --- Phase, Condensed --- Liquids --- Matter --- Solids --- Coulomb gap. --- Diversification. --- Effective Hamfltonians. --- Local degrees of freedom. --- Mott Insulator. --- Newtonian mode. --- Numerical Approach. --- Sociologists. --- Superconducting. --- antagonism. --- conceptual foundation. --- condense. --- decays. --- electron-phonon coupling. --- electronic mechanism. --- foreshadowing. --- fractionalized. --- function of time. --- impurities. --- independently. --- insulating. --- localization. --- low energy. --- multiphase diagram. --- paramagnetic. --- quasidegeneracy. --- stoichiometric. --- superconductors. --- unconventional.
Choose an application
This collection of articles focuses on different aspects of the study of organic conductors. Recent progress in both theoretical and experimental studies is covered in this Special Issue. Papers on a wide variety of studies are categorized into representative topics of chemistry and physics. Besides classical studies on the crystalline organic conductors, applied studies on semiconducting thin films and a number of new topics shared with inorganic materials are also discussed.
Technology: general issues --- Chemical engineering --- organic π-radical --- molecular conductor --- phthalocyanine --- three-dimensional network --- three-dimensional electronic system --- organic conductors --- bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) --- bis(ethylenediseleno)tetrathiafulvalene (BEST) --- bis(ethylenedithio)tetraselenafulvalene (BETS) --- electrical resistivity --- magnetic susceptibility --- X-ray analysis --- charge-ordered state --- quantum chemical calculations --- Madelung energy --- magnetic property --- reversible transformation --- spin ladder --- nodal line semimetal --- single-component molecular conductor --- conductivity --- DOS --- tight-binding model --- interacting electrons in one dimension --- electronic and lattice instabilities --- renormalization group method --- X-ray diffraction --- single crystal --- electron density --- molecular orbital --- single-component molecular conductors --- extended-TTF dithiolate ligands --- gold dithiolate complexes --- (BETS)2Fe1−xGaxCl4 --- π-d interaction --- NMR --- charge glass --- heat capacity --- electric current --- electric voltage --- Boson peak --- chirality --- tetrathiafulvalene --- crystal structures --- band structure calculations --- hydrogen bonding --- charge-transfer salts --- (TMTTF)2X --- deuteration --- anions --- charge transport --- tunnel junction --- MOCVD --- quantum well --- co-doping --- solar cells --- (TMTSF)8(I3)5 --- (TMTSF)5(I3)2 --- (TMTSF)4(I3)4·THF --- organic conductor --- crystal structure --- high pressure --- DFT --- MP2 --- organic superconductors --- Beechgard salts --- Maxwell-Garnett approximation --- high-Tc --- pressure effect --- Dirac electron system --- resistivity --- magnetoresistance --- synchrotron X-ray diffraction --- band calculation --- correlated electron materials --- layered organic conductor --- unconventional superconductivity --- vortex dynamics --- d-wave pairing symmetry --- superconducting gap structure --- magnetic field --- flux-flow resistivity --- charge-ordered insulator --- electric double layer transistor --- organic field-effect transistor --- π–d system --- Mott insulator --- strongly correlated electron system --- multiferroic --- dielectric --- photoconductor --- organic semiconductors --- molecular orbitals --- pyroelectricity --- temperature modulation --- molecular ferroelectrics --- radiative temperature control --- thermal diffusion model --- lithium niobate --- first-principles calculation --- density-functional theory --- charge ordering --- hybrid functional --- electronic structure --- nickel–dithiolene complex --- cycloalkane substituent --- crystalline organic charge-transfer complexes --- disordered systems --- overlap integrals --- extended Hückel approximation --- Dirac electrons --- zero-gap semiconductors --- merging of Dirac cones --- n/a --- π-d system --- nickel-dithiolene complex --- extended Hückel approximation
Choose an application
This collection of articles focuses on different aspects of the study of organic conductors. Recent progress in both theoretical and experimental studies is covered in this Special Issue. Papers on a wide variety of studies are categorized into representative topics of chemistry and physics. Besides classical studies on the crystalline organic conductors, applied studies on semiconducting thin films and a number of new topics shared with inorganic materials are also discussed.
organic π-radical --- molecular conductor --- phthalocyanine --- three-dimensional network --- three-dimensional electronic system --- organic conductors --- bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) --- bis(ethylenediseleno)tetrathiafulvalene (BEST) --- bis(ethylenedithio)tetraselenafulvalene (BETS) --- electrical resistivity --- magnetic susceptibility --- X-ray analysis --- charge-ordered state --- quantum chemical calculations --- Madelung energy --- magnetic property --- reversible transformation --- spin ladder --- nodal line semimetal --- single-component molecular conductor --- conductivity --- DOS --- tight-binding model --- interacting electrons in one dimension --- electronic and lattice instabilities --- renormalization group method --- X-ray diffraction --- single crystal --- electron density --- molecular orbital --- single-component molecular conductors --- extended-TTF dithiolate ligands --- gold dithiolate complexes --- (BETS)2Fe1−xGaxCl4 --- π-d interaction --- NMR --- charge glass --- heat capacity --- electric current --- electric voltage --- Boson peak --- chirality --- tetrathiafulvalene --- crystal structures --- band structure calculations --- hydrogen bonding --- charge-transfer salts --- (TMTTF)2X --- deuteration --- anions --- charge transport --- tunnel junction --- MOCVD --- quantum well --- co-doping --- solar cells --- (TMTSF)8(I3)5 --- (TMTSF)5(I3)2 --- (TMTSF)4(I3)4·THF --- organic conductor --- crystal structure --- high pressure --- DFT --- MP2 --- organic superconductors --- Beechgard salts --- Maxwell-Garnett approximation --- high-Tc --- pressure effect --- Dirac electron system --- resistivity --- magnetoresistance --- synchrotron X-ray diffraction --- band calculation --- correlated electron materials --- layered organic conductor --- unconventional superconductivity --- vortex dynamics --- d-wave pairing symmetry --- superconducting gap structure --- magnetic field --- flux-flow resistivity --- charge-ordered insulator --- electric double layer transistor --- organic field-effect transistor --- π–d system --- Mott insulator --- strongly correlated electron system --- multiferroic --- dielectric --- photoconductor --- organic semiconductors --- molecular orbitals --- pyroelectricity --- temperature modulation --- molecular ferroelectrics --- radiative temperature control --- thermal diffusion model --- lithium niobate --- first-principles calculation --- density-functional theory --- charge ordering --- hybrid functional --- electronic structure --- nickel–dithiolene complex --- cycloalkane substituent --- crystalline organic charge-transfer complexes --- disordered systems --- overlap integrals --- extended Hückel approximation --- Dirac electrons --- zero-gap semiconductors --- merging of Dirac cones --- n/a --- π-d system --- nickel-dithiolene complex --- extended Hückel approximation
Choose an application
This collection of articles focuses on different aspects of the study of organic conductors. Recent progress in both theoretical and experimental studies is covered in this Special Issue. Papers on a wide variety of studies are categorized into representative topics of chemistry and physics. Besides classical studies on the crystalline organic conductors, applied studies on semiconducting thin films and a number of new topics shared with inorganic materials are also discussed.
Technology: general issues --- Chemical engineering --- organic π-radical --- molecular conductor --- phthalocyanine --- three-dimensional network --- three-dimensional electronic system --- organic conductors --- bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) --- bis(ethylenediseleno)tetrathiafulvalene (BEST) --- bis(ethylenedithio)tetraselenafulvalene (BETS) --- electrical resistivity --- magnetic susceptibility --- X-ray analysis --- charge-ordered state --- quantum chemical calculations --- Madelung energy --- magnetic property --- reversible transformation --- spin ladder --- nodal line semimetal --- single-component molecular conductor --- conductivity --- DOS --- tight-binding model --- interacting electrons in one dimension --- electronic and lattice instabilities --- renormalization group method --- X-ray diffraction --- single crystal --- electron density --- molecular orbital --- single-component molecular conductors --- extended-TTF dithiolate ligands --- gold dithiolate complexes --- (BETS)2Fe1−xGaxCl4 --- π-d interaction --- NMR --- charge glass --- heat capacity --- electric current --- electric voltage --- Boson peak --- chirality --- tetrathiafulvalene --- crystal structures --- band structure calculations --- hydrogen bonding --- charge-transfer salts --- (TMTTF)2X --- deuteration --- anions --- charge transport --- tunnel junction --- MOCVD --- quantum well --- co-doping --- solar cells --- (TMTSF)8(I3)5 --- (TMTSF)5(I3)2 --- (TMTSF)4(I3)4·THF --- organic conductor --- crystal structure --- high pressure --- DFT --- MP2 --- organic superconductors --- Beechgard salts --- Maxwell-Garnett approximation --- high-Tc --- pressure effect --- Dirac electron system --- resistivity --- magnetoresistance --- synchrotron X-ray diffraction --- band calculation --- correlated electron materials --- layered organic conductor --- unconventional superconductivity --- vortex dynamics --- d-wave pairing symmetry --- superconducting gap structure --- magnetic field --- flux-flow resistivity --- charge-ordered insulator --- electric double layer transistor --- organic field-effect transistor --- π-d system --- Mott insulator --- strongly correlated electron system --- multiferroic --- dielectric --- photoconductor --- organic semiconductors --- molecular orbitals --- pyroelectricity --- temperature modulation --- molecular ferroelectrics --- radiative temperature control --- thermal diffusion model --- lithium niobate --- first-principles calculation --- density-functional theory --- charge ordering --- hybrid functional --- electronic structure --- nickel-dithiolene complex --- cycloalkane substituent --- crystalline organic charge-transfer complexes --- disordered systems --- overlap integrals --- extended Hückel approximation --- Dirac electrons --- zero-gap semiconductors --- merging of Dirac cones
Listing 1 - 4 of 4 |
Sort by
|