Narrow your search

Library

KU Leuven (2)

LUCA School of Arts (2)

Odisee (2)

Thomas More Kempen (2)

Thomas More Mechelen (2)

UCLL (2)

ULiège (2)

VIVES (2)

VUB (2)


Resource type

book (2)

dissertation (1)


Language

English (3)


Year
From To Submit

2022 (1)

2013 (1)

2010 (1)

Listing 1 - 3 of 3
Sort by

Dissertation
Semidefinite optimization for the separability problem
Authors: --- --- --- --- --- et al.
Year: 2022 Publisher: Liège Université de Liège (ULiège)

Loading...
Export citation

Choose an application

Bookmark

Abstract

Since the discovery of quantum entanglement, characterization and detection of multipartite entanglement has remained an open question. In this work, we present how one can map the separability problem onto the truncated moment problem in probability theory. It leads to a necessary and sufficient condition for the separability of arbitrary quantum systems with arbitrary symmetries between the subparts. A semidefinite algorithm is presented, whose outcome provides a certificate of separability, or entanglement.


Book
Multivariate Characteristic and Correlation Functions
Author:
ISSN: 01790986 ISBN: 3110223996 9783110223996 9783110223989 3110223988 Year: 2013 Volume: 50 Publisher: Berlin Boston

Loading...
Export citation

Choose an application

Bookmark

Abstract

In a certain sense characteristic functions and correlation functions are the same, the common underlying concept is positive definiteness. Many results in probability theory, mathematical statistics and stochastic processes can be derived by using these functions. While there are books on characteristic functions of one variable, books devoting some sections to the multivariate case, and books treating the general case of locally compact groups, interestingly there is no book devoted entirely to the multidimensional case which is extremely important for applications. This book is intended to fill this gap at least partially. It makes the basic concepts and results on multivariate characteristic and correlation functions easily accessible to both students and researchers in a comprehensive manner. The first chapter presents basic results and should be read carefully since it is essential for the understanding of the subsequent chapters. The second chapter is devoted to correlation functions, their applications to stationary processes and some connections to harmonic analysis. In Chapter 3 we deal with several special properties, Chapter 4 is devoted to the extension problem while Chapter 5 contains a few applications. A relatively large appendix comprises topics like infinite products, functional equations, special functions or compact operators.


Book
Matrices, moments, and quadrature with applications
Authors: ---
ISBN: 9780691143415 0691143412 9786612458019 1282936077 1282458019 1400833884 9781400833887 9781282458017 Year: 2010 Publisher: Princeton, N.J. : Princeton University Press,

Loading...
Export citation

Choose an application

Bookmark

Abstract

This computationally oriented book describes and explains the mathematical relationships among matrices, moments, orthogonal polynomials, quadrature rules, and the Lanczos and conjugate gradient algorithms. The book bridges different mathematical areas to obtain algorithms to estimate bilinear forms involving two vectors and a function of the matrix. The first part of the book provides the necessary mathematical background and explains the theory. The second part describes the applications and gives numerical examples of the algorithms and techniques developed in the first part. Applications addressed in the book include computing elements of functions of matrices; obtaining estimates of the error norm in iterative methods for solving linear systems and computing parameters in least squares and total least squares; and solving ill-posed problems using Tikhonov regularization. This book will interest researchers in numerical linear algebra and matrix computations, as well as scientists and engineers working on problems involving computation of bilinear forms.

Keywords

Matrices. --- Numerical analysis. --- Mathematical analysis --- Algebra, Matrix --- Cracovians (Mathematics) --- Matrix algebra --- Matrixes (Algebra) --- Algebra, Abstract --- Algebra, Universal --- Matrices --- Numerical analysis --- Algorithm. --- Analysis of algorithms. --- Analytic function. --- Asymptotic analysis. --- Basis (linear algebra). --- Basis function. --- Biconjugate gradient method. --- Bidiagonal matrix. --- Bilinear form. --- Calculation. --- Characteristic polynomial. --- Chebyshev polynomials. --- Coefficient. --- Complex number. --- Computation. --- Condition number. --- Conjugate gradient method. --- Conjugate transpose. --- Cross-validation (statistics). --- Curve fitting. --- Degeneracy (mathematics). --- Determinant. --- Diagonal matrix. --- Dimension (vector space). --- Eigenvalues and eigenvectors. --- Equation. --- Estimation. --- Estimator. --- Exponential function. --- Factorization. --- Function (mathematics). --- Function of a real variable. --- Functional analysis. --- Gaussian quadrature. --- Hankel matrix. --- Hermite interpolation. --- Hessenberg matrix. --- Hilbert matrix. --- Holomorphic function. --- Identity matrix. --- Interlacing (bitmaps). --- Inverse iteration. --- Inverse problem. --- Invertible matrix. --- Iteration. --- Iterative method. --- Jacobi matrix. --- Krylov subspace. --- Laguerre polynomials. --- Lanczos algorithm. --- Linear differential equation. --- Linear regression. --- Linear subspace. --- Logarithm. --- Machine epsilon. --- Matrix function. --- Matrix polynomial. --- Maxima and minima. --- Mean value theorem. --- Meromorphic function. --- Moment (mathematics). --- Moment matrix. --- Moment problem. --- Monic polynomial. --- Monomial. --- Monotonic function. --- Newton's method. --- Numerical integration. --- Numerical linear algebra. --- Orthogonal basis. --- Orthogonal matrix. --- Orthogonal polynomials. --- Orthogonal transformation. --- Orthogonality. --- Orthogonalization. --- Orthonormal basis. --- Partial fraction decomposition. --- Polynomial. --- Preconditioner. --- QR algorithm. --- QR decomposition. --- Quadratic form. --- Rate of convergence. --- Recurrence relation. --- Regularization (mathematics). --- Rotation matrix. --- Singular value. --- Square (algebra). --- Summation. --- Symmetric matrix. --- Theorem. --- Tikhonov regularization. --- Trace (linear algebra). --- Triangular matrix. --- Tridiagonal matrix. --- Upper and lower bounds. --- Variable (mathematics). --- Vector space. --- Weight function.

Listing 1 - 3 of 3
Sort by