Listing 1 - 10 of 10 |
Sort by
|
Choose an application
The importance and usefulness of subjects and topics involving integral transformations and operational calculus are becoming widely recognized, not only in the mathematical sciences but also in the physical, biological, engineering and statistical sciences. This book contains invited reviews and expository and original research articles dealing with and presenting state-of-the-art accounts of the recent advances in these important and potentially useful subjects.
Research & information: general --- Mathematics & science --- approximation operators --- differences of operators --- Szász–Mirakyan–Baskakov operators --- Durrmeyer type operators --- Bernstein polynomials --- modulus of continuity --- starlike functions --- subordination --- q-Differential operator --- k-Fibonacci numbers --- Lorentz invariant complex measures --- Minkowski space --- spectral decomposition --- measure convolution --- measure product --- Feynman propagator --- q-difference operator --- Janowski function --- meromorphic multivalent function --- distortion theorem --- partial sum --- closure theorem --- analytic functions --- multivalent (or p-valent) functions --- differential subordination --- q-derivative (or q-difference) operator --- Dunkel type integral inequality --- Schur-convexity --- majorization theory --- arithmetic mean-geometric mean (AM-GM) inequality --- Lerch function --- quadruple integral --- contour integral --- logarithmic function --- preinvex fuzzy mappings --- strongly preinvex fuzzy mappings --- strongly invex fuzzy mappings --- strongly fuzzy monotonicity --- strongly fuzzy mixed variational-like inequalities --- Fourier integral theorem --- double integral --- exponential function --- Catalan’s constant --- Aprey’s constant --- non-separable linear canonical wavelet --- symplectic matrix --- non-separable linear canonical transform --- uncertainty principle --- Fox–Wright function --- generalized hypergeometric function --- Mittag–Leffler function
Choose an application
This book discusses some aspects of the theory of partial differential equations from the viewpoint of probability theory. It is intended not only for specialists in partial differential equations or probability theory but also for specialists in asymptotic methods and in functional analysis. It is also of interest to physicists who use functional integrals in their research. The work contains results that have not previously appeared in book form, including research contributions of the author.
Partial differential equations --- Differential equations, Partial. --- Probabilities. --- Integration, Functional. --- Functional integration --- Functional analysis --- Integrals, Generalized --- Probability --- Statistical inference --- Combinations --- Mathematics --- Chance --- Least squares --- Mathematical statistics --- Risk --- A priori estimate. --- Absolute continuity. --- Almost surely. --- Analytic continuation. --- Axiom. --- Big O notation. --- Boundary (topology). --- Boundary value problem. --- Bounded function. --- Calculation. --- Cauchy problem. --- Central limit theorem. --- Characteristic function (probability theory). --- Chebyshev's inequality. --- Coefficient. --- Comparison theorem. --- Continuous function (set theory). --- Continuous function. --- Convergence of random variables. --- Cylinder set. --- Degeneracy (mathematics). --- Derivative. --- Differential equation. --- Differential operator. --- Diffusion equation. --- Diffusion process. --- Dimension (vector space). --- Direct method in the calculus of variations. --- Dirichlet boundary condition. --- Dirichlet problem. --- Eigenfunction. --- Eigenvalues and eigenvectors. --- Elliptic operator. --- Elliptic partial differential equation. --- Equation. --- Existence theorem. --- Exponential function. --- Feynman–Kac formula. --- Fokker–Planck equation. --- Function space. --- Functional analysis. --- Fundamental solution. --- Gaussian measure. --- Girsanov theorem. --- Hessian matrix. --- Hölder condition. --- Independence (probability theory). --- Integral curve. --- Integral equation. --- Invariant measure. --- Iterated logarithm. --- Itô's lemma. --- Joint probability distribution. --- Laplace operator. --- Laplace's equation. --- Lebesgue measure. --- Limit (mathematics). --- Limit cycle. --- Limit point. --- Linear differential equation. --- Linear map. --- Lipschitz continuity. --- Markov chain. --- Markov process. --- Markov property. --- Maximum principle. --- Mean value theorem. --- Measure (mathematics). --- Modulus of continuity. --- Moment (mathematics). --- Monotonic function. --- Navier–Stokes equations. --- Nonlinear system. --- Ordinary differential equation. --- Parameter. --- Partial differential equation. --- Periodic function. --- Poisson kernel. --- Probabilistic method. --- Probability space. --- Probability theory. --- Probability. --- Random function. --- Regularization (mathematics). --- Schrödinger equation. --- Self-adjoint operator. --- Sign (mathematics). --- Simultaneous equations. --- Smoothness. --- State-space representation. --- Stochastic calculus. --- Stochastic differential equation. --- Stochastic. --- Support (mathematics). --- Theorem. --- Theory. --- Uniqueness theorem. --- Variable (mathematics). --- Weak convergence (Hilbert space). --- Wiener process.
Choose an application
This book is meant to give an account of recent developments in the theory of Plateau's problem for parametric minimal surfaces and surfaces of prescribed constant mean curvature ("H-surfaces") and its analytical framework. A comprehensive overview of the classical existence and regularity theory for disc-type minimal and H-surfaces is given and recent advances toward general structure theorems concerning the existence of multiple solutions are explored in full detail.The book focuses on the author's derivation of the Morse-inequalities and in particular the mountain-pass-lemma of Morse-Tompkins and Shiffman for minimal surfaces and the proof of the existence of large (unstable) H-surfaces (Rellich's conjecture) due to Brezis-Coron, Steffen, and the author. Many related results are covered as well. More than the geometric aspects of Plateau's problem (which have been exhaustively covered elsewhere), the author stresses the analytic side. The emphasis lies on the variational method.Originally published in 1989.The Princeton Legacy Library uses the latest print-on-demand technology to again make available previously out-of-print books from the distinguished backlist of Princeton University Press. These editions preserve the original texts of these important books while presenting them in durable paperback and hardcover editions. The goal of the Princeton Legacy Library is to vastly increase access to the rich scholarly heritage found in the thousands of books published by Princeton University Press since its founding in 1905.
Calculus of variations. --- Global analysis (Mathematics). --- Minimal surfaces. --- Plateau's problem. --- Global analysis (Mathematics) --- MATHEMATICS / Geometry / Differential. --- Analysis, Global (Mathematics) --- Differential topology --- Functions of complex variables --- Geometry, Algebraic --- Isoperimetrical problems --- Variations, Calculus of --- Maxima and minima --- Minimal surface problem --- Plateau problem --- Problem of Plateau --- Minimal surfaces --- Surfaces, Minimal --- Banach space. --- Bernhard Riemann. --- Big O notation. --- Boundary value problem. --- Branch point. --- C0. --- Closed geodesic. --- Compact space. --- Complex analysis. --- Complex number. --- Conformal map. --- Conjecture. --- Contradiction. --- Convex curve. --- Convex set. --- Differentiable function. --- Direct method in the calculus of variations. --- Dirichlet integral. --- Dirichlet problem. --- Embedding. --- Estimation. --- Euler–Lagrange equation. --- Existential quantification. --- Geometric measure theory. --- Global analysis. --- Jordan curve theorem. --- Linear differential equation. --- Mathematical analysis. --- Mathematical problem. --- Mathematician. --- Maximum principle. --- Mean curvature. --- Metric space. --- Minimal surface. --- Modulus of continuity. --- Morse theory. --- Nonparametric statistics. --- Normal (geometry). --- Parallel projection. --- Parameter space. --- Parametrization. --- Partial differential equation. --- Quadratic growth. --- Quantity. --- Riemann mapping theorem. --- Second derivative. --- Sign (mathematics). --- Special case. --- Surface area. --- Tangent space. --- Theorem. --- Total curvature. --- Uniform convergence. --- Variational method (quantum mechanics). --- Variational principle. --- W0. --- Weak solution.
Choose an application
This volume consists of a collection of 14 accepted submissions (including several invited feature articles) to the Special Issue of MDPI's journal Symmetry on the general subject area of integral transformations, operational calculus and their applications from many different parts around the world. The main objective of the Special Issue was to gather review, expository, and original research articles dealing with the state-of-the-art advances in integral transformations and operational calculus as well as their multidisciplinary applications, together with some relevance to the aspect of symmetry. Various families of fractional-order integrals and derivatives have been found to be remarkably important and fruitful, mainly due to their demonstrated applications in numerous diverse and widespread areas of mathematical, physical, chemical, engineering, and statistical sciences. Many of these fractional-order operators provide potentially useful tools for solving ordinary and partial differential equations, as well as integral, differintegral, and integro-differential equations; fractional-calculus analogues and extensions of each of these equations; and various other problems involving special functions of mathematical physics and applied mathematics, as well as their extensions and generalizations in one or more variables.
History of engineering & technology --- Stancu-type Bernstein operators --- Bézier bases --- Voronovskaja-type theorems --- modulus of continuity --- rate of convergence --- bivariate operators --- approximation properties --- statistical convergence --- P-convergent --- statistically and relatively modular deferred-weighted summability --- relatively modular deferred-weighted statistical convergence --- Korovkin-type approximation theorem --- modular space --- convex space --- N-quasi convex modular --- N-quasi semi-convex modular --- vehicle collaborative content downloading --- fuzzy comprehensive evaluation --- VANET --- delay differential equations --- integral operator --- periodic solutions --- subordinations --- exponential function --- Hankel determinant --- fractional differential equations with input --- Mittag-Leffler stability --- left generalized fractional derivative --- ρ-Laplace transforms --- functional integral equations --- Banach algebra --- fixed point theorem --- measure of noncompactness --- Geometric Function Theory --- q-integral operator --- q-starlike functions of complex order --- q-convex functions of complex order --- (δ,q)-neighborhood --- meromorphic multivalent starlike functions --- subordination --- univalent function --- symmetric differential operator --- unit disk --- analytic function --- analytic functions --- conic region --- Hadamard product --- differential subordination --- differential superordination --- generalized fractional differintegral operator --- Convex function --- Simpson’s rule --- differentiable function --- weights --- positive integral operators --- convolution operators --- n/a --- Bézier bases --- Simpson's rule
Choose an application
This volume consists of a collection of 14 accepted submissions (including several invited feature articles) to the Special Issue of MDPI's journal Symmetry on the general subject area of integral transformations, operational calculus and their applications from many different parts around the world. The main objective of the Special Issue was to gather review, expository, and original research articles dealing with the state-of-the-art advances in integral transformations and operational calculus as well as their multidisciplinary applications, together with some relevance to the aspect of symmetry. Various families of fractional-order integrals and derivatives have been found to be remarkably important and fruitful, mainly due to their demonstrated applications in numerous diverse and widespread areas of mathematical, physical, chemical, engineering, and statistical sciences. Many of these fractional-order operators provide potentially useful tools for solving ordinary and partial differential equations, as well as integral, differintegral, and integro-differential equations; fractional-calculus analogues and extensions of each of these equations; and various other problems involving special functions of mathematical physics and applied mathematics, as well as their extensions and generalizations in one or more variables.
Stancu-type Bernstein operators --- Bézier bases --- Voronovskaja-type theorems --- modulus of continuity --- rate of convergence --- bivariate operators --- approximation properties --- statistical convergence --- P-convergent --- statistically and relatively modular deferred-weighted summability --- relatively modular deferred-weighted statistical convergence --- Korovkin-type approximation theorem --- modular space --- convex space --- N-quasi convex modular --- N-quasi semi-convex modular --- vehicle collaborative content downloading --- fuzzy comprehensive evaluation --- VANET --- delay differential equations --- integral operator --- periodic solutions --- subordinations --- exponential function --- Hankel determinant --- fractional differential equations with input --- Mittag-Leffler stability --- left generalized fractional derivative --- ρ-Laplace transforms --- functional integral equations --- Banach algebra --- fixed point theorem --- measure of noncompactness --- Geometric Function Theory --- q-integral operator --- q-starlike functions of complex order --- q-convex functions of complex order --- (δ,q)-neighborhood --- meromorphic multivalent starlike functions --- subordination --- univalent function --- symmetric differential operator --- unit disk --- analytic function --- analytic functions --- conic region --- Hadamard product --- differential subordination --- differential superordination --- generalized fractional differintegral operator --- Convex function --- Simpson’s rule --- differentiable function --- weights --- positive integral operators --- convolution operators --- n/a --- Bézier bases --- Simpson's rule
Choose an application
This volume consists of a collection of 14 accepted submissions (including several invited feature articles) to the Special Issue of MDPI's journal Symmetry on the general subject area of integral transformations, operational calculus and their applications from many different parts around the world. The main objective of the Special Issue was to gather review, expository, and original research articles dealing with the state-of-the-art advances in integral transformations and operational calculus as well as their multidisciplinary applications, together with some relevance to the aspect of symmetry. Various families of fractional-order integrals and derivatives have been found to be remarkably important and fruitful, mainly due to their demonstrated applications in numerous diverse and widespread areas of mathematical, physical, chemical, engineering, and statistical sciences. Many of these fractional-order operators provide potentially useful tools for solving ordinary and partial differential equations, as well as integral, differintegral, and integro-differential equations; fractional-calculus analogues and extensions of each of these equations; and various other problems involving special functions of mathematical physics and applied mathematics, as well as their extensions and generalizations in one or more variables.
History of engineering & technology --- Stancu-type Bernstein operators --- Bézier bases --- Voronovskaja-type theorems --- modulus of continuity --- rate of convergence --- bivariate operators --- approximation properties --- statistical convergence --- P-convergent --- statistically and relatively modular deferred-weighted summability --- relatively modular deferred-weighted statistical convergence --- Korovkin-type approximation theorem --- modular space --- convex space --- N-quasi convex modular --- N-quasi semi-convex modular --- vehicle collaborative content downloading --- fuzzy comprehensive evaluation --- VANET --- delay differential equations --- integral operator --- periodic solutions --- subordinations --- exponential function --- Hankel determinant --- fractional differential equations with input --- Mittag-Leffler stability --- left generalized fractional derivative --- ρ-Laplace transforms --- functional integral equations --- Banach algebra --- fixed point theorem --- measure of noncompactness --- Geometric Function Theory --- q-integral operator --- q-starlike functions of complex order --- q-convex functions of complex order --- (δ,q)-neighborhood --- meromorphic multivalent starlike functions --- subordination --- univalent function --- symmetric differential operator --- unit disk --- analytic function --- analytic functions --- conic region --- Hadamard product --- differential subordination --- differential superordination --- generalized fractional differintegral operator --- Convex function --- Simpson's rule --- differentiable function --- weights --- positive integral operators --- convolution operators
Choose an application
Many parallels between complex dynamics and hyperbolic geometry have emerged in the past decade. Building on work of Sullivan and Thurston, this book gives a unified treatment of the construction of fixed-points for renormalization and the construction of hyperbolic 3- manifolds fibering over the circle. Both subjects are studied via geometric limits and rigidity. This approach shows open hyperbolic manifolds are inflexible, and yields quantitative counterparts to Mostow rigidity. In complex dynamics, it motivates the construction of towers of quadratic-like maps, and leads to a quantitative proof of convergence of renormalization.
Differential dynamical systems --- Drie-menigvuldigheden (Topologie) --- Three-manifolds (Topology) --- Trois-variétés (Topologie) --- Differentiable dynamical systems. --- Dynamical systems, Differentiable --- Dynamics, Differentiable --- 3-manifolds (Topology) --- Manifolds, Three dimensional (Topology) --- Three-dimensional manifolds (Topology) --- Differential equations --- Global analysis (Mathematics) --- Topological dynamics --- Low-dimensional topology --- Topological manifolds --- Algebraic topology. --- Analytic continuation. --- Automorphism. --- Beltrami equation. --- Bifurcation theory. --- Boundary (topology). --- Cantor set. --- Circular symmetry. --- Combinatorics. --- Compact space. --- Complex conjugate. --- Complex manifold. --- Complex number. --- Complex plane. --- Conformal geometry. --- Conformal map. --- Conjugacy class. --- Convex hull. --- Covering space. --- Deformation theory. --- Degeneracy (mathematics). --- Dimension (vector space). --- Disk (mathematics). --- Dynamical system. --- Eigenvalues and eigenvectors. --- Factorization. --- Fiber bundle. --- Fuchsian group. --- Fundamental domain. --- Fundamental group. --- Fundamental solution. --- G-module. --- Geodesic. --- Geometry. --- Harmonic analysis. --- Hausdorff dimension. --- Homeomorphism. --- Homotopy. --- Hyperbolic 3-manifold. --- Hyperbolic geometry. --- Hyperbolic manifold. --- Hyperbolic space. --- Hypersurface. --- Infimum and supremum. --- Injective function. --- Intersection (set theory). --- Invariant subspace. --- Isometry. --- Julia set. --- Kleinian group. --- Laplace's equation. --- Lebesgue measure. --- Lie algebra. --- Limit point. --- Limit set. --- Linear map. --- Mandelbrot set. --- Manifold. --- Mapping class group. --- Measure (mathematics). --- Moduli (physics). --- Moduli space. --- Modulus of continuity. --- Möbius transformation. --- N-sphere. --- Newton's method. --- Permutation. --- Point at infinity. --- Polynomial. --- Quadratic function. --- Quasi-isometry. --- Quasiconformal mapping. --- Quasisymmetric function. --- Quotient space (topology). --- Radon–Nikodym theorem. --- Renormalization. --- Representation of a Lie group. --- Representation theory. --- Riemann sphere. --- Riemann surface. --- Riemannian manifold. --- Schwarz lemma. --- Simply connected space. --- Special case. --- Submanifold. --- Subsequence. --- Support (mathematics). --- Tangent space. --- Teichmüller space. --- Theorem. --- Topology of uniform convergence. --- Topology. --- Trace (linear algebra). --- Transversal (geometry). --- Transversality (mathematics). --- Triangle inequality. --- Unit disk. --- Unit sphere. --- Upper and lower bounds. --- Vector field. --- Differentiable dynamical systems --- 515.16 --- 515.16 Topology of manifolds --- Topology of manifolds
Choose an application
Singular integrals are among the most interesting and important objects of study in analysis, one of the three main branches of mathematics. They deal with real and complex numbers and their functions. In this book, Princeton professor Elias Stein, a leading mathematical innovator as well as a gifted expositor, produced what has been called the most influential mathematics text in the last thirty-five years. One reason for its success as a text is its almost legendary presentation: Stein takes arcane material, previously understood only by specialists, and makes it accessible even to beginning graduate students. Readers have reflected that when you read this book, not only do you see that the greats of the past have done exciting work, but you also feel inspired that you can master the subject and contribute to it yourself. Singular integrals were known to only a few specialists when Stein's book was first published. Over time, however, the book has inspired a whole generation of researchers to apply its methods to a broad range of problems in many disciplines, including engineering, biology, and finance. Stein has received numerous awards for his research, including the Wolf Prize of Israel, the Steele Prize, and the National Medal of Science. He has published eight books with Princeton, including Real Analysis in 2005.
Functions of real variables. --- Harmonic analysis. --- Singular integrals. --- Multiplicateurs (analyse mathématique) --- Multipliers (Mathematical analysis) --- Functional analysis --- Harmonic analysis. Fourier analysis --- Functions of real variables --- Harmonic analysis --- Singular integrals --- Fonctions de variables réelles --- Analyse harmonique --- Intégrales singulières --- Fonctions de plusieurs variables réelles --- Calcul différentiel --- Functions of several real variables --- Differential calculus --- 517.518.5 --- Integrals, Singular --- Integral operators --- Integral transforms --- Analysis (Mathematics) --- Functions, Potential --- Potential functions --- Banach algebras --- Calculus --- Mathematical analysis --- Mathematics --- Bessel functions --- Fourier series --- Harmonic functions --- Time-series analysis --- Real variables --- Functions of complex variables --- 517.518.5 Theory of the Fourier integral --- Theory of the Fourier integral --- A priori estimate. --- Analytic function. --- Banach algebra. --- Banach space. --- Basis (linear algebra). --- Bessel function. --- Bessel potential. --- Big O notation. --- Borel measure. --- Boundary value problem. --- Bounded function. --- Bounded operator. --- Bounded set (topological vector space). --- Bounded variation. --- Boundedness. --- Cartesian product. --- Change of variables. --- Characteristic function (probability theory). --- Characterization (mathematics). --- Commutative property. --- Complex analysis. --- Complex number. --- Continuous function (set theory). --- Continuous function. --- Convolution. --- Derivative. --- Difference "ient. --- Difference set. --- Differentiable function. --- Dimension (vector space). --- Dimensional analysis. --- Dirac measure. --- Dirichlet problem. --- Distribution function. --- Division by zero. --- Dot product. --- Dual space. --- Equation. --- Existential quantification. --- Family of sets. --- Fatou's theorem. --- Finite difference. --- Fourier analysis. --- Fourier series. --- Fourier transform. --- Function space. --- Green's theorem. --- Harmonic function. --- Hilbert space. --- Hilbert transform. --- Homogeneous function. --- Infimum and supremum. --- Integral transform. --- Interpolation theorem. --- Interval (mathematics). --- Linear map. --- Lipschitz continuity. --- Lipschitz domain. --- Locally integrable function. --- Marcinkiewicz interpolation theorem. --- Mathematical induction. --- Maximal function. --- Maximum principle. --- Mean value theorem. --- Measure (mathematics). --- Modulus of continuity. --- Multiple integral. --- Open set. --- Order of integration. --- Orthogonality. --- Orthonormal basis. --- Partial derivative. --- Partial differential equation. --- Partition of unity. --- Periodic function. --- Plancherel theorem. --- Pointwise. --- Poisson kernel. --- Polynomial. --- Real variable. --- Rectangle. --- Riesz potential. --- Riesz transform. --- Scientific notation. --- Sign (mathematics). --- Singular integral. --- Sobolev space. --- Special case. --- Splitting lemma. --- Subsequence. --- Subset. --- Summation. --- Support (mathematics). --- Theorem. --- Theory. --- Total order. --- Unit vector. --- Variable (mathematics). --- Zero of a function. --- Fonctions de plusieurs variables réelles --- Calcul différentiel --- Multiplicateurs (analyse mathématique)
Choose an application
This book explores the most recent developments in the theory of planar quasiconformal mappings with a particular focus on the interactions with partial differential equations and nonlinear analysis. It gives a thorough and modern approach to the classical theory and presents important and compelling applications across a spectrum of mathematics: dynamical systems, singular integral operators, inverse problems, the geometry of mappings, and the calculus of variations. It also gives an account of recent advances in harmonic analysis and their applications in the geometric theory of mappings. The book explains that the existence, regularity, and singular set structures for second-order divergence-type equations--the most important class of PDEs in applications--are determined by the mathematics underpinning the geometry, structure, and dimension of fractal sets; moduli spaces of Riemann surfaces; and conformal dynamical systems. These topics are inextricably linked by the theory of quasiconformal mappings. Further, the interplay between them allows the authors to extend classical results to more general settings for wider applicability, providing new and often optimal answers to questions of existence, regularity, and geometric properties of solutions to nonlinear systems in both elliptic and degenerate elliptic settings.
Differential equations, Elliptic. --- Quasiconformal mappings. --- Mappings, Quasiconformal --- Conformal mapping --- Functions of complex variables --- Geometric function theory --- Mappings (Mathematics) --- Elliptic differential equations --- Elliptic partial differential equations --- Linear elliptic differential equations --- Differential equations, Linear --- Differential equations, Partial --- Adjoint equation. --- Analytic function. --- Analytic proof. --- Banach space. --- Beltrami equation. --- Boundary value problem. --- Bounded mean oscillation. --- Calculus of variations. --- Cantor function. --- Cartesian product. --- Cauchy–Riemann equations. --- Central limit theorem. --- Characterization (mathematics). --- Complex analysis. --- Complex plane. --- Conformal geometry. --- Conformal map. --- Conjugate variables. --- Continuous function (set theory). --- Coordinate space. --- Degeneracy (mathematics). --- Differential equation. --- Directional derivative. --- Dirichlet integral. --- Dirichlet problem. --- Disk (mathematics). --- Distribution (mathematics). --- Elliptic operator. --- Elliptic partial differential equation. --- Equation. --- Equations of motion. --- Euler–Lagrange equation. --- Explicit formulae (L-function). --- Factorization. --- Fourier transform. --- Fubini's theorem. --- Geometric function theory. --- Geometric measure theory. --- Geometry. --- Harmonic conjugate. --- Harmonic function. --- Harmonic map. --- Harmonic measure. --- Hilbert transform. --- Holomorphic function. --- Homeomorphism. --- Hyperbolic geometry. --- Hyperbolic trigonometry. --- Invertible matrix. --- Jacobian matrix and determinant. --- Julia set. --- Lagrangian (field theory). --- Laplace's equation. --- Limit (mathematics). --- Linear differential equation. --- Linear equation. --- Linear fractional transformation. --- Linear map. --- Linearization. --- Lipschitz continuity. --- Locally integrable function. --- Lusin's theorem. --- Mathematical optimization. --- Mathematics. --- Maxima and minima. --- Maxwell's equations. --- Measure (mathematics). --- Metric space. --- Mirror symmetry (string theory). --- Moduli space. --- Modulus of continuity. --- Monodromy theorem. --- Monotonic function. --- Montel's theorem. --- Operator (physics). --- Operator theory. --- Partial derivative. --- Partial differential equation. --- Poisson formula. --- Polynomial. --- Quadratic function. --- Quasiconformal mapping. --- Quasiconvex function. --- Quasisymmetric function. --- Renormalization. --- Riemann sphere. --- Riemann surface. --- Riemannian geometry. --- Riesz transform. --- Riesz–Thorin theorem. --- Sign (mathematics). --- Sobolev space. --- Square-integrable function. --- Support (mathematics). --- Theorem. --- Two-dimensional space. --- Uniformization theorem. --- Upper half-plane. --- Variable (mathematics). --- Weyl's lemma (Laplace equation).
Choose an application
Researches and investigations involving the theory and applications of integral transforms and operational calculus are remarkably wide-spread in many diverse areas of the mathematical, physical, chemical, engineering and statistical sciences.
infinite-point boundary conditions --- nonlinear boundary value problems --- q-polynomials --- ?-generalized Hurwitz–Lerch zeta functions --- Hadamard product --- password --- summation formulas --- Hankel determinant --- multi-strip --- Euler numbers and polynomials --- natural transform --- fuzzy volterra integro-differential equations --- zeros --- fuzzy differential equations --- Szász operator --- q)-Bleimann–Butzer–Hahn operators --- distortion theorems --- analytic function --- generating relations --- differential operator --- pseudo-Chebyshev polynomials --- Chebyshev polynomials --- Mellin transform --- uniformly convex functions --- operational methods --- differential equation --- ?-convex function --- Fourier transform --- q)-analogue of tangent zeta function --- q -Hermite–Genocchi polynomials --- Dunkl analogue --- derivative properties --- q)-Euler numbers and polynomials of higher order --- exact solutions --- encryption --- spectrum symmetry --- advanced and deviated arguments --- PBKDF --- wavelet transform of generalized functions --- fuzzy general linear method --- Lommel functions --- highly oscillatory Bessel kernel --- generalized mittag-leffler function --- audio features --- the uniqueness of the solution --- analytic --- Mittag–Leffler functions --- Dziok–Srivastava operator --- Bell numbers --- rate of approximation --- Bessel kernel --- univalent functions --- inclusion relationships --- Liouville–Caputo-type fractional derivative --- tangent polynomials --- Bernoulli spiral --- multi-point --- q -Hermite–Euler polynomials --- analytic functions --- Fredholm integral equation --- orthogonality property --- Struve functions --- cryptography --- Janowski star-like function --- starlike and q-starlike functions --- piecewise Hermite collocation method --- uniformly starlike and convex functions --- q -Hermite–Bernoulli polynomials --- generalized functions --- meromorphic function --- basic hypergeometric functions --- fractional-order differential equations --- q -Sheffer–Appell polynomials --- integral representations --- Srivastava–Tomovski generalization of Mittag–Leffler function --- Caputo fractional derivative --- Bernoulli --- symmetric --- sufficient conditions --- nonlocal --- the existence of a solution --- functions of bounded boundary and bounded radius rotations --- differential inclusion --- symmetry of the zero --- recurrence relation --- nonlinear boundary value problem --- Volterra integral equations --- Ulam stability --- q)-analogue of tangent numbers and polynomials --- starlike function --- function spaces and their duals --- strongly starlike functions --- q)-Bernstein operators --- vibrating string equation --- ?-generalized Hurwitz-Lerch zeta functions --- bound on derivatives --- Janowski convex function --- volterra integral equation --- strongly-starlike function --- Hadamard product (convolution) --- regular solution --- generalized Hukuhara differentiability --- functions with positive real part --- exponential function --- q–Bleimann–Butzer–Hahn operators --- Carlitz-type q-tangent polynomials --- distributions --- Carlitz-type q-tangent numbers --- starlike functions --- Riemann-Stieltjes functional integral --- hash --- K-functional --- (p --- Euler --- truncated-exponential polynomials --- Maple graphs --- Hurwitz-Euler eta function --- higher order Schwarzian derivatives --- generating functions --- strongly convex functions --- Hölder condition --- multiple Hurwitz-Euler eta function --- recurrence relations --- q-starlike functions --- partial sum --- Euler and Genocchi polynomials --- tangent numbers --- spectral decomposition --- determinant definition --- monomiality principle --- highly oscillatory --- Hurwitz-Lerch zeta function --- Adomian decomposition method --- analytic number theory --- existence --- existence of at least one solution --- symmetric identities --- modulus of continuity --- modified Kudryashov method --- MFCC --- q-hypergeometric functions --- differential subordination --- Janowski functions --- and Genocchi numbers --- series representation --- initial conditions --- generalization of exponential function --- upper bound --- q-derivative (or q-difference) operator --- DCT --- Schwartz testing function space --- anuran calls --- generalized Kuramoto–Sivashinsky equation --- Mittag–Leffler function --- subordination --- Hardy space --- convergence --- Hermite interpolation --- direct Hermite collocation method --- q-Euler numbers and polynomials --- distribution space --- Apostol-type polynomials and Apostol-type numbers --- Schauder fixed point theorem --- fractional integral --- convolution quadrature rule --- q)-integers --- Liouville-Caputo fractional derivative --- fixed point --- convex functions --- Grandi curves --- tempered distributions --- higher order q-Euler numbers and polynomials --- radius estimate
Listing 1 - 10 of 10 |
Sort by
|